Retention of possible churning customer is one of the most important issues in customer relationship management, so companies try to predict churn customers using their large-scale high-dimensional data. This study focuses on dealing with large data sets by reducing the dimensionality. By using six different dimension reduction methods-Principal Component Analysis (PCA), factor analysis (FA), locally linear embedding (LLE), local tangent space alignment (LTSA), locally preserving projections (LPP), and deep auto-encoder-our experiments apply each dimension reduction method to the training data, build a classification model using the mapped data and then measure the performance using hit rate to compare the dimension reduction methods. In the result, PCA shows good performance despite its simplicity, and the deep auto-encoder gives the best overall performance. These results can be explained by the characteristics of the churn prediction data that is highly correlated and overlapped over the classes. We also proposed a simple out-of-sample extension method for the nonlinear dimension reduction methods, LLE and LTSA, utilizing the characteristic of the data.
Ginseng cultivated in different country or growing condition has generally different components such as saponin and protein, and it relates to efficacy and action. Protein content assumes by nitrogen content in ginseng radix. Nitrogen content could be determined by chemical analysis such as kjeldahl or extraction methods. However, these methods require long analysis time and result environmental pollution and sample damage. In this work we investigated possibility of non-destructive determination of nitrogen content in ginseng radix using near-infrared spectroscopy. Ginseng radix, root of Panax ginseng C. A. Meyer, was studied. Total 120 samples were used in this study and it was consisted of 6 sample sets, 4, 5 and 6-year-old Korea ginseng and 7, 8 and 9-year-old China ginseng, respectively. Each sample set has 20 sample. Nigrogen content was measured by electronic analysis. NIR reflectance spectra were collected over the 1100 to 2500 nm spectral region with a InfraAlyzer 500C (Bran+Luebbe, Germany) equipped with a halogen lapmp and PbS detector and data were collected every 2 nm data point intervals. The calibration models were carried out by multiple linear regression (MLR) and partial least squares (PLS) analysis using IDAS and SESAME software. Result of electronic analysis, Korean ginseng were different mean value in nitrogen content of China ginseng. Ginseng tend to generally decrease the nitrogen content according as cultivation year is over 6 years. The MLR calibration model with 8 wavelengths using IDAS software accurately predicted nitrogen contents with correlation coefficient (R) and standard error of prediction of 0.985 and 0.855%, respectively. In case of SESAME software, the MLR calibration with 9 wavelength was selected the best calibration, R and SEP were 0.972 and 0.596%, respectively. The PLSR calibration model result in 0.969 of R and 0.630 of RMSEP. This study shows the NIR spectroscopy could be applied to determine the nitrogen content in ginseng radix with high accuracy.
As the supply and demand of pork has become a significant concern in Korea, controlling it has become a critical challenge for the industry. However, compared to the demand for pork, which has relatively stable consumption, it is not easy to maintain a stable supply. As the preparation of measures for a supply-demand crisis response and supply control in the pig industry has emerged as an important task, it has become necessary to establish a stable supply model and create an appropriate manual. In this study, a pork supply prediction model is constructed using reported data from the pig traceability system. Based on the derived results, a method for determining the supply-demand crisis stage using a statistical approach was proposed. From the results of the analysis, working days, African swine fever, heat wave, and Covid-19 were shown to affect the number of pigs graded in the market. A test of the performance of the model showed that both in-sample error rate and out-sample error rate were between 0.3 - 7.6%, indicating a high level of predictive power. Applying the forecast, the distribution of the confidence interval of the predicted value was established, and the supply crisis stage was identified, evaluating supply-demand conditions.
In order to find out an alternative way of analysis of food waste compost, the Near Infrared Reflectance Spectroscopy(NIRS) was used for the compost assessment because the technics has been known as non-detructive, cost-effective and rapid method. One hundred thirty six compost samples were collected from Incheon food waste compost factory at Namdong Indurial Complex. The samples were analyzed for nitrogen, organic matter (OM), ash, P, and K using Kjedahl, ignition method, and acid extraction with spectrophotometer, respectively. The samples were scanned using FOSS NIRSystem of Model 6500 scanning mono-chromator with wavelength from $400\~2,400nm$ at 2nm interval. Modified partial Least Squares(MPLS) was applied to develop the most reliable calibration model between NIR spectra and sample components such as nitrogen, ash, OM, P, and K. The regression was validated using validation set(n=30). Multiple correlation coefficient($R^2$) and standard error of prediction(SEP) for nitrogen, ash, organic matter, OM/N ratio, P and K were 0.87, 0.06, 0.72, 1.07, 0.68, 1.05, 0.89, 0.31, 0.77, 0.06, and 0.64, 0.07, respectively. The results of this experiment indicates that NIRS is reliable analytical method to assess some components of feed waste compost, also suggests that feasibility of NIRS can be Justified in case of various sample collection around the year.
Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.
출구조사에서 투표소 추출방법은 출구조사의 정확성을 결정하는 중요한 요소이다. 본 연구에서는 대표구 추출법을 대신할 수 있는 정렬계통추출법을 제안하고 그 활용 가능성 및 효율성을 분석한다. 아울러 제시된 정렬계통추출법을 사용하는 경우 추정량의 표본추출오차(sampling error)가 어느 정도 되며, 원하는 목표 오차를 만족하기 위한 표본크기를 결정하는 문제를 고려한다. 2004년 17대 총선 개표자료를 토대로 경험적인 분석을 통해 제시된 정렬계통추출법이 기존의 대표구 추출법에 비해 평균예측오차 관점에서 효율적이라는 사실을 규명하고, 기존의 출구조사에서 표본크기 및 추정오차를 해석하는 과정에서 발생하는 오류를 집락효과를 이용해 설명했다. 아울러 제안한 정렬추출법에서 얻어지는 추정량의 분산을 구하고, 설계효과 개념을 이용해 표본크기 결정문제를 다루었다.
본 연구는 서울지역 특1급 호텔을 대상으로 2015년도 재무비율을 변수로 활용하여 표준재무비율을 산출하며, 다변량 판별분석에 의한 부실예측모형 개발 및 부실예측력 평가에 목적이 있다. 서울소재 19개 특1급 호텔의 14개 재무비율을 분석대상으로 선정하여 실증분석을 실시하였으며 분석결과는 다음과 같다. 첫째, 분석결과 우수기업과 부실기업을 판별하는 7개 재무비율은 유동비율, 차입금의존도, 영업이익대비 이자보상비율, 매출액영업이익율, 자기자본순이익율, 영업현금흐름비율, 총자산회전율로 나타났다. 둘째, 7개 재무비율을 활용하여 우수기업과 부실기업을 판별하는 판별함수를 다변량판별분석에 의해 추정하였으며, 추정된 판별함수를 실제 소속집단과 예측집단으로 분류가 가능한가의 예측력 검정 결과, 예측 판별력의 정확도는 87.9%로 분석되었다. 셋째, 추정된 판별함수의 예측 판별력의 정확도 검증결과 판별분석에 의한 부실예측모형의 예측력은 78.95%로 분석되었다. 이러한 분석결과, 호텔 경영진은 호텔기업의 부실기업집단을 판별하는 7개 재무비율을 중점적으로 관리해야 함을 시사하고 있다. 또한 호텔기업이 타 산업과는 뚜렷한 재무구조의 차이와 부실예측 지표가 상이하며, 이에 호텔기업 대상의 신용평가시스템 구축 시 호텔기업의 재무적 특성을 반영한 시스템 구축이 필요함을 시사하고 있다.
This study was carried out to identify users' choice behavior of theme parks. overland. Lotte World, Seoul Land, Dreamland and Children's Grand Park were selected as study areas. Both multinomial logic model(MNL), nested logic model(NMNL) and joint logit model wet$.$e test using a choice-based sample collected on study areas. Hausman-McFadden test showed that the MNL is not appropriate because the IIA assumption is violated. To avoid the problematic IIA assumption, the NMNL was tested. It splits similar alternatives into groups and nests separate decisions into hierarchical order to avoid the IIA assumption. Cluster analysis and discriminant analysis were conducted to find applicable nest structures. The inclusive value coefficient was 0.7788. It meant that sufficient condition of this model is met and users' choice behavior can be better understood by NMNL than MNL. The $\rho$2 value and accuracy of prediction of this model were 0.402 and 46.33% , respectively. Several comments were suggested to make the NMNL to be more reliable for future research on users' choice behavior of theme park.
This work demonstrated the application of an artificial neural network model for predicting the Jominy hardness curve by considering 13 alloying elements in low alloy steels. End-quench Jominy tests were carried out according to ASTM A255 standard method for 1197 samples. The hardness values of Jominy sample were measured at different points from the quenched end. The developed artificial neural network model predicted the Jominy curve with high accuracy ($R^2=0.9969$ for training and $R^2=0.9956$ for verification). In addition, the model was used to investigate the average sensitivity of input variables to hardness change.
Communications for Statistical Applications and Methods
/
제25권6호
/
pp.659-671
/
2018
In this study, we consider the extension of the heterogeneous autoregressive (HAR) model for realized volatility by incorporating a neural network (NN) structure. Since HAR is a linear model, we expect that adding a neural network term would explain the delicate nonlinearity of the realized volatility. Three neural network-based HAR models, namely HAR-NN, $HAR({\infty})-NN$, and HAR-AR(22)-NN are considered with performance measured by evaluating out-of-sample forecasting errors. The results of the study show that HAR-NN provides a slightly wider interval than traditional HAR as well as shows more peaks and valleys on the turning points. It implies that the HAR-NN model can capture sharper changes due to higher volatility than the traditional HAR model. The HAR-NN model for prediction interval is therefore recommended to account for higher volatility in the stock market. An empirical analysis on the multinational realized volatility of stock indexes shows that the HAR-NN that adds daily, weekly, and monthly volatility averages to the neural network model exhibits the best performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.