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Abstract

In this study, we consider the extension of the heterogeneous autoregressive (HAR) model for realized volatil-
ity by incorporating a neural network (NN) structure. Since HAR is a linear model, we expect that adding a neural
network term would explain the delicate nonlinearity of the realized volatility. Three neural network-based HAR
models, namely HAR-NN, HAR(c0)-NN, and HAR-AR(22)-NN are considered with performance measured by
evaluating out-of-sample forecasting errors. The results of the study show that HAR-NN provides a slightly wider
interval than traditional HAR as well as shows more peaks and valleys on the turning points. It implies that the
HAR-NN model can capture sharper changes due to higher volatility than the traditional HAR model. The HAR-
NN model for prediction interval is therefore recommended to account for higher volatility in the stock market.
An empirical analysis on the multinational realized volatility of stock indexes shows that the HAR-NN that adds
daily, weekly, and monthly volatility averages to the neural network model exhibits the best performance.

Keywords: realized volatility (RV), heterogeneous autoregressive (HAR) model, neural network
(NN), long memory

1. Introduction

The rapid development of technology for handling high-frequency transaction data in finance has
opened a new era in the volatility modeling domain. Rather than considering the closing price to obtain
traditional returns, the sum of intraday square returns called realized volatility (RV) is considered a
more precise approximation of volatility. In this regard, this study considers the statistical volatility
modeling of financial markets based on RV.

The RV also shows stylized facts that are similar to a traditional daily log-return as a proxy for
volatility. It also includes high persistency, time-varying conditional variance, and non-Gaussianity;
see for example, Andersen et al. (2001a, 2001b), Barndorff-Nielsen and Shephard (2002a, 2002b),
Corsi (2009) and the references therein. Therefore, long memory models such as the autoregressive
fractionally integrated moving average (ARFIMA) model have been applied to RV data. On the other
hand, Corsi (2009) proposed a simple linear model called the heterogeneous autoregressive (HAR)
model composed of three heterogeneous components of RV obtained at a different time interval. They
suggested daily, weekly, and monthly averages in HAR, and it is widely reported as exhibiting a
superior forecasting performance with its simple estimation procedure. However, the recent increase
in computing capacity shows the need to improve HAR models. One apparent method of improvising
is to generalize HAR to non-linear models using a neural network (NN).
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This is not the first study to combine a neural network with the HAR model. It has already been
considered in Hillebrand and Medeiros (2010), McAleer and Medeiros (2011). However, these studies
focused on ensembling estimates using bagging, and hence it has a slightly different perspective. In
this study, we delve deeper into the neural network modeling of HAR for RV. This is because the ap-
plication of a neural network entails tuning parameters, such as the number of layers and hidden units,
to ensure that the bias-variance trade-off between the number of parameters determines forecasting
performance.

The HAR model is a constrained autoregressive (AR) model; therefore, we work with the feed-
forward AR neural network. We consider a three-neural-network based HAR models, depending on
which variables enter the model. We considered the original HAR model with daily, weekly, and
monthly averages, and the infinite HAR model suggested by Hwang and Shin (2014) for a better
approximation of high persistence. Finally, the hybrid of the first and second models are considered
to estimate a moderate number of parameters. The proposed models are fully tested in terms of out-
of-sample forecasting over 11 major stock indices globally.

The paper is organized as follows. In Section 2, the RV and HAR models are briefly recalled;
the neural-network based HAR models are proposed in Section 3. We evaluate the out-of-sample
forecasting errors of the proposed models over 11 multinational RVs in Section 4. Some properties of
residuals obtained from fitting NN-based HAR models to real data set are investigated in Section 5.
Empirical findings on the neural network HAR models are discussed and concluded in Section 6.

2. Realized volatility and HAR model

Let the price of the financial index, such as stock, and exchange rate of interest at h day be P;.
Subsequently, the (daily) log-return is defined as

P,

P t—1

r, = log =log P; — log P;_.

The volatility model can be represented as
=06 &~WNQ,I),

to ensure that the log-return changes over time and is indexed by ;. However, the rapid development
of data observation and storage technologies has facilitated the acquisition of log-return in almost real-
time. Therefore, we can consider the continuous analogue of the volatility model in high frequency.
Subsequently, the log-return for A frequencies, which are cuts of M equidistant intervals in one day,
is given as:

Fa—-jn) = IOg P(,_j.A) - IOg P(z—(j+1)-A)~ (21)

The integrated volatility for one day is given as the square root of the quadratic variation as:

t+1d
V9 = f a2(w)dw, (2.2)
t

and Andersen et al. (2003) show that it can be well approximated by the RV given by

(2.3)
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Likewise, the daily return RV also shares similar stylized facts such as high persistence in auto-
correlations also known as long memory, non-Gaussianity, and heterogeneous conditional variance.
Among many models incorporating such features, high-persistence is the key feature in understanding
and modeling the RV. For example, the long memory model, such as ARFIMA, is a popular model
considered in the literature. Alternatively, Corsi (2009) suggested a very simple linear model approx-
imating the long memory model. Define the weekly and monthly RV (denoted by RV and RV!"™,
respectively) as

1
(W) _ ) (d) (d)
RV = g(RV, +RV? +--- +RVY ), (2.4)
1
(m) _ (d) (d) (d)
RV = 22(RV, +RV( + -+ RV, ), (2.5)

where RV;d) is considered as today’s RV. Subsequently, the HAR model is given by

RV

rld = € +ﬁ(d)RV§d) +,3(W)RV§W) +,3(m)RV§m) + Wrids  Wp1a ~ WN <0, g 2)- (2.6)

Therefore, the HAR model captures the long memory feature by considering local averages of the
immediate past, moderate (weekly), and long (monthly) history. It is also observed that the HAR is
a constrained AR(22) model; therefore, the estimation and inference is straightforward when using
autoregressive moving average (ARMA) modeling approaches.

Hwang and Shin (2014) proposed infinite order HAR, HAR(e0), by allowing the infinite order
autoregressive terms, namely

RV? —c4 Z BRV + wiig, wuig ~ WN(0,07). 2.7)

t—jd
This model is a long memory model under suitable conditions on parameters {8, j € {N U {0}}}.

3. Neural network-based HAR models

In this section, we propose the neural network-based HAR models. The basic framework is the feed-
forward AR(p)-NN model with a single hidden layer and ¢ hidden units. The AR(p)-NN model is
represented as

q
, iid
Yt =ﬁozt+Z,3jH(Zz)+ft, &~ N(O,O'z), 3.1
=1
where By = (Boo, Bo1>Bo2, - --»Bop)s and z; = (1, yr-1, -2, ..., ¥1—p)’. Z; in (3.1) is an autoregressive

vector and H(-) is a suitable activation function. For example, sigmoid active function gives

H(z,) = (1 + exp (—y;-zt))_ ,
and hyperbolic tangent function gives
H(z;) = tanh (—y}z,) ,

where y; = (vjo,¥j1-..,¥jp) is the weight vector of z,. It must be noted that the feed-forward AR(p)-
NN model is a non-linear model with an activation function that plays the role of a basis function. For
more details regarding estimation, see Kock and Terdsvirta (2011).
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We consider the three-neural-network-based HAR models. The first model is a natural extension
of (3.1) to HAR, with

z, = (LRVI, RV, RVI")'.
For example, the sigmoid activation function gives the following

RV,

@ = Boo + BoaRV\? + Lo, RV + By, RV™

q -1
+ 3 B (1+exp (=70 = 7iaRVL” = ¥RV = 7 RVI™)) " + 6114. (3.2)
j=1

We will denote this model as HAR-NN. In fact, HAR-NN model is also studied in Hillebrand and
Medeiros (2010), McAleer and Medeiros (2011); however, they are more focused on the bagged
estimator rather than the HAR-NN model estimates themselves.

Our second mode is an extension of HAR(c0) to the neural network model. However, practically,
the HAR(c0) model should be approximated by some large values of p. Since the HAR model is a
special case of AR(22), we set p = 22. The HAR(c0)-NN model is referred to as the model (3.1) with

3 @) o) @ Y
7= (LRV", RV ... .RVE) ).

For example, the hyperbolic tangent activation function gives
2 q 2
d d d
RV, = Boo + Y BuRVG, , + > B;tanh [y_,-o > yj,-Rvﬁj(,_i)d) + €1 (3.3)
i=1 j=1 i=1

We may expect a better forecasting performance because the HAR(c0)-NN reflects both non-
linearity and long-memory properties with more coefficients. However, the number of parameters
used in HAR(c0)-NN is 23 + 244, and are almost five times more than that in HAR-NN. This factor
may lead to estimation errors, and thereby deteriorate the forecasting performance. Therefore, we
also consider a hybrid of two models as:

22 q
RV = Boo+ ) BoRVE o+ > BiH @) + €14 (3.4)
i=1 j=1

with
z, = (L.RV!”. RV RV{")".

Then, the number of parameters to be estimated is 23 + 5¢, so uses less variables for approximating
the non-linear terms. We will denote this model as HAR-AR(22)-NN. We fit the HAR-AR(22)-NN
model by iteratively applying the multi-staged fitting. First, we fit AR(22) to the original data, and fit
feed-forward NN model (using HAR model’s independent variables (z;) as input values in the NN) to
the residuals. Subsequently, by subtracting the fitted value obtained from the feed-forward NN model
from RVf‘i)l 4 and by fitting AR(22) model again, we update the coefficients in the HAR-AR(22)-NN
model until convergence.
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Figure 1: TS, ACF, PACE, and QQ plots of KOSPI daily RV series. RV = realized volatility.

4. Forecasting comparison with multinational RVs

In this section, we compare the forecasting performance of the proposed neural network-based HAR
models. We use the daily volatility data from the Oxford-Man Institute of Quantitative Finance (avail-
able online). We use the 5 minutes high-frequency data to calculate the RV from January 2, 2006
to December 30, 2015 and obtain 2,612 daily RV series. We use 11 stock indices from around the
world: Standard & Poor’s (S&P) 500, Financial Times Stock Exchange (FTSE) 100, Russel, Dow
Jones Industrial Average (DJIA), Nikkei 225, Hang Seng, KOSPI, Indice Bursatil Espanol (IBEX35),
Bovespa, Euro, and Deutscher Aktienindex (DAX). Figure 1 shows the RV time plot, sample auto-
correlations, partial autocorrelation, and Normal QQ-plot for the KOSPI index. It is observed that the
volatility level changes over time with very strong and slowly decaying autocorrelations, which are
possibly heavy-tailed. Therefore, it seems to be reasonable to consider the HAR models to explain
such features.

We evaluate the one-step-ahead out-of-sample mean squared prediction error (MSPE) and mean
absolute prediction error (MAPE) for the performance measure of forecasting. It is given by

T+T-1d 2 T+T,—1d

1 @ @ : V@ @
MSPE = — > (RVHM—RVHM), MAPE:= - > [RV{(,~RV{,l. (D)

L= "oeET

where the model is fitted from the training data from daily time point 1 to 7, and the square and
absolute prediction errors are calculated in the test set from daily time point 7 + 1 to T + T} using
rolling-window method. For example for the KOSPI RV, we set T = 2,512 and and 7, = 100. First,
the model is built upon the initial training data from 1 to 2,512 and predict 2,513" value. Then, we
use data from 1 to 2,513 to reestimate model parameters while all other tuning parameters remain
fixed and forecast 2,514 value. By iterating this procedure to all 100 observations in the test set,
we obtain 1-step-ahead out-of-sample forecasts. Finally, MSPE and MAPE are calculated for model
comparison.

It is important to note that our proposed neural network-based HAR models require selecting an
optimal order of approximation g. This must be done by minimizing the pre-specified loss as a func-
tion of g. We followed the popular training-validation approach to determine the tuning parameter as
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Table 1: The optimal choice of g with the sigmoid activation function for the KOSPI RV series. The criterion is
to minimize MSPEx10° and MAPEx10* according to g

HAR-NN HAR(c0)-NN HAR-AR(22)-NN

MSPE MAPE MSPE MAPE MSPE MAPE

g=1 0.2330 1.140 0.2710 1.157 0.3080 1.485
g=5 0.0005 0.054 0.0028 0.078 0.0098 0.095
g=10 0.0278 0.519 0.0327 0.602 0.0413 0.663
g=15 0.0472 0.698 0.0508 0.728 0.0467 0.687
q=120 0.0367 0.610 0.0501 0.722 0.0752 0.816

HAR = heterogeneous autoregressive model; NN = neural network; AR = autoregressive; MSPE = mean squared prediction
error; MAPE = mean absolute prediction error.

Table 2: The optimal choice of g with the tanh activation function for the KOSPI RV series. The criterion is to
minimize MSPEx10°> and MAPEx 103 according to g.

HAR-NN HAR(c0)-NN HAR-AR(22)-NN

MSPE MAPE MSPE MAPE MSPE MAPE

g=1 0.2300 1.060 0.2450 1.087 0.2570 1.099
g=5 0.0317 0.563 0.0397 0.581 0.0402 0.612
g=10 0.0125 0.204 0.0208 0.278 0.0377 0.579
g=15 0.0382 0.580 0.0424 0.711 0.0411 0.699
q=120 0.0501 0.712 0.0372 0.569 0.0397 0.602

HAR = heterogeneous autoregressive model; NN = neural network; AR = autoregressive; MSPE = mean squared prediction
error; MAPE = mean absolute prediction error.

it becomes standard method in machine learning literature. We further divide the training set into two
sets; the first 2,312 observations compose the training set for the tuning parameter selection, and the
next 100 observations make up the validation set. The loss function is the MSPE- and MAPE-based
one-step-ahead out-of-sample forecast given as (4.1). For example, Tables 1-2 show the MSPE x 10°
and MAPE x 10° as a function of ¢ when they are evaluated from the validation set (in the KOSPI
RV series set). With the sigmoid activation function, the minimum is achieved when ¢ = 5 for all
models and both performance measures. However, with the tangent hyperbolic activation function,
the minimum is achieved with ¢ = 10. This indicates that a detailed order of approximation is needed
with the tanh activation function. Once the optimal ¢ is selected for each RV series and model, we
merge the validation set into the training set to re-estimate the parameters to obtain better forecasts.
We implemented above algorithm with R and posted them for readers convenience to open repository
GitHub as
https://github.com/yools56/Neural-Network-based-HAR-models

Tables 3—4 show the one-step-ahead MSPE for multinational stock indexes when the sigmoid and
tanh activation functions are used for the neural network models, respectively. We also compare the
traditional HAR model and the ARFIMA model as a reference for long memory model. The order
of ARFIMA model is selected through the Bayesian information criterion (BIC). The optimal order
of ARFIMA model was chosen by having the smallest BIC value. For example, the optimal order of
ARFIMA model of KOSPI RV series is (1,d, 1).

When the sigmoid function is used for the activation function, it is observed that the HAR-NN
model achieves the minimum MSPE for most of the stock indexes, such as S&P 500, FTSE 100,
Russel, DJIA, Nikkei 225, Hang Seng, KOSPI, and Euro. The HAR(c0)-NN model performs best for
Bovespa, and the ARFIMA model performs best for IBEX 35 and DAX. However, when it comes
to the tanh activation function, the HAR-NN model uniformly achieves the minimum for all stock
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Table 3: MSPE x 10° with optimal ¢ and sigmoid activation function

Stock Model
HAR HAR-NN HAR(c0)-NN HAR-AR(22)-NN ARFIMA
S&P 500 3.429 3.313 3.425 3.648 3.405
FTSE 100 0.999 0.928 1.155 1.199 0.990
Russel 0.642 0.605 0.638 0.870 0.632
DIJIA 5.635 5.556 6.117 6.046 5.585
Nikkei 225 2.242 2.056 2916 2.636 2.287
Hang Seng 0.765 0.749 0.843 0.965 0.795
KOSPI 0.315 0.294 0.301 0.426 0.317
IBEX 35 1.491 1.595 1.509 2.070 1.474
Bovespa 0.6985 0.712 0.692 1.296 0.6986
Euro 2.119 2.085 2.364 2.880 2.100
DAX 1.680 1.676 1.781 2.409 1.671
The average 1.819 1.779 1.976 2222 1.806

MSPE = mean squared prediction; HAR = heterogeneous autoregressive model; NN = neural network; AR = autoregressive;
ARFIMA = autoregressive fractionally integrated moving average.

Table 4: MSPE x 10° with optimal ¢ and tanh activation function

Stock Model
HAR HAR-NN HAR(o0)-NN HAR-AR(22)-NN ARFIMA

S&P 500 3.429 3.393 3.442 3.666 3.405
FTSE 100 0.999 0.988 1.019 1.192 0.990
Russel 0.642 0.638 0.667 0.864 0.632
DIIA 5.635 5.574 5.708 5.927 5.585
Nikkei 225 2.242 2.171 2.348 2.705 2.287
Hang Seng 0.765 0.699 0.858 0.994 0.795
KOSPI 0.315 0.287 0.321 0.370 0.317
IBEX 35 1.491 1.457 1.559 1.901 1.474
Bovespa 0.6985 0.672 0.695 1.288 0.6986
Euro 2.119 2.095 2.287 2.828 2.100
DAX 1.680 1.670 1.724 2.303 1.671
The average 1.820 1.786 1.875 2.185 1.814

MSPE = mean squared prediction; HAR = heterogeneous autoregressive model; NN = neural network; AR = autoregressive;
ARFIMA = autoregressive fractionally integrated moving average.

indexes. It is interesting to observe that higher-order HAR models, such as the HAR(c0)-NN or HAR-
AR(22)-NN models, perform worse than the HAR-NN model. We believe that this is because of the
estimation error emerging as a result of estimating too many parameters relative to the sample size.
Out-of-sample forecasting does not necessarily improve by having a model with smaller in-sample
errors. This becomes more evident in Figures 2—-3 wherein the out-of-sample forecasts are overlaid
in one figure. The purple line presents the HAR-AR(22)-NN model, and they are clearly away from
other forecasts.

The results for the one-step-ahead out-of-sample MAPE is presented in Tables 5-6. The results
are more delicate here. The HAR-NN model performs the best among the HAR type of models;
however, the ARFIMA model also works well when compared to the HAR-based model. This finding
is slightly contrary to expectations because the number of parameters used in the ARFIMA model is
smaller than NN-based HAR models. Similarly to the MSPE, too many parameter estimations may
worsen the forecasting performance.

Since the stock market shows higher volatility, point estimates may not successfully evaluate the
forecasting performance. Hence, we also consider the comparison of the one-step-ahead prediction
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Figure 2: Forecasting overlay plot for the KOSPI RV series in the out-of-sample set with sigmoid activation
function.
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Figure 3: Forecasting overlay plot for the KOSPI RV series in the out-of-sample set with tanh activation function.

interval for RV(TdJ)rl .- We use the confidence interval formula for neural network models given by

Allende et al. (2002). We rewrite the neural network-based HAR model as

RVY = g@)+ €uiar €10 ~ WN(O,0), (4.2)

where g(-) is a non-linear function that combines HAR and NN. Subsequently, Allende er al. (2002)
proposed the 100(1 — @)% asymptotic prediction interval as

8(z) £ 1-5(dDF V1 +38, (4.3)

where g(z,) is a neural network estimate, k is the number of input variables in the neural network,
t(1-¢/2)(df) is the (1 — a/ 2)th quantile of student ¢ distribution with the degree of freedom df = T — (k +
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Table 5: MAPE x 10* with optimal ¢ and sigmoid activation function

Stock Model
HAR HAR-NN HAR(c0)-NN HAR-AR(22)-NN ARFIMA

S&P 500 2.771 2.653 2.778 2.936 2.750
FTSE 100 1.697 1.650 1.817 2.009 1.653
Russel 1.662 1.633 1.663 1.946 1.615
DIJIA 3413 3.341 3.560 3.575 3.379
Nikkei 225 2.804 2.764 3.152 3.023 2.818
Hang Seng 1.865 1.896 1.931 2.099 1.882
KOSPI 1.174 1.155 1.125 1.433 1.154
IBEX 35 2.519 2.564 2.562 3.010 2.474
Bovespa 2.000 2.009 1.959 2.520 1.970
Euro 2.735 2.789 2.850 3.353 2.698
DAX 2.468 2.436 2.569 3.208 2.438
The average 2.283 2.262 2.360 2.647 2.257

MAPE = mean absolute prediction error; HAR = heterogeneous autoregressive model; NN = neural network; AR = auto-
regressive; ARFIMA = autoregressive fractionally integrated moving average.

Table 6: MAPE x 10* with optimal ¢ and tanh activation function

Stock Model
HAR HAR-NN HAR(c0)-NN HAR-AR(22)-NN ARFIMA

S&P 500 2.771 2.709 2.745 2.930 2.750
FTSE 100 1.697 1.659 1.694 1.917 1.653
Russel 2000 1.662 1.679 1.728 1.868 1.615
DJIA 3.413 3.399 3411 3.504 3.379
Nikkei 225 2.804 2.830 2.890 3.031 2.818
Hang Seng 1.865 1.847 1.931 2.102 1.882
KOSPI 1.174 1.143 1.204 1.398 1.154
IBEX 35 2.519 2.531 2.587 2.877 2.474
Bovespa 2.000 1.963 1.989 2.627 1.970
Euro 2.735 2.727 2.947 3.344 2.698
DAX 2.468 2.464 2.487 3.100 2.438
The average 2.283 2.268 2.328 2.609 2.257

MAPE = mean absolute prediction error; HAR = heterogeneous autoregressive model; NN = neural network; AR = auto-
regressive; ARFIMA = autoregressive fractionally integrated moving average.

2)q— 1 -k, and

| —

T
= > RV, - 20) .
t=1

o

The $ is an asymptotic variance of g(z,) that is calculated from the continuity of the non-linear func-
tion g, based on the delta method; however, this method is not detailed here for brevity (see, equation
30 in Allende et al. (2002)).

Figures 4-5 show the one-step-ahead 95% asymptotic prediction intervals for the HAR-NN model
with the sigmoid and tanh activation functions, respectively. The HAR-NN provides a slightly wider
interval than the traditional HAR, and shows more peaks and valleys on turning points. It means
that the HAR-NN model can capture sharper changes due to a higher volatility than the HAR model.
Hence, it is recommended to use the HAR-NN model for prediction interval to account for higher
stock market volatility.
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Overlay plot of KOSPI Realized Volatility series in Out-Of sample set with (asymptotic) prediction interval(confidence level : 95%)
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Figure 4: 95% prediction intervals for HAR-NN model with sigmoid activation function. HAR = heterogeneous
autoregressive model; NN = neural network.

Overlay plot of KOSPI Realized Volatility series in Qut-Of sample set with (asymptetic) prediction interval(confidence level : 95%)
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Figure 5: 95% prediction intervals for HAR-NN model with tanh activation function. HAR = heterogeneous
autoregressive model; NN = neural network.

5. Residual analysis

Here, we check model adequacy by residual analysis. Figure 6 shows some diagnostic plots from the
residuals after fitting HAR-NN model for the KOSPI RV with a sigmoid activation function. They
are residuals time plot, sample autocorrelations plot, partial autocorrelations plot, sample autocorre-
lations plot from the squared series and normal quantile-quantile plot. They show no clear evidence
of dependency, remaining trend and unequal variances. The portmanteau test such as Ljung-Box test
with 20 lags gives p-value of 0.7707, and Engle’s test with lag 1 to determine ARCH effect gives
p-value of 0.7985. Therefore, we conclude that there is no strong evidence against white noise as-
sumption and no ARCH effect for the HAR-NN model. Similar conclusions are also drawn for other
models. We only report diagnostic plots in Figures 7-8, HAR(c0)-NN and HAR-AR(22)-NN models,
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respectively, for concise presentation. Indeed, we do not observe any significant evidence against
white noise assumption and no ARCH effect is observed.

6. Conclusion

In this study, we consider three-neural-network-based HAR models. The traditional HAR model takes
daily, weekly, and monthly average volatility, and it is naturally extended to HAR-NN by incorporat-
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Figure 8: Diagnostic plots from HAR-AR(22)-NN model for the KOSPI RV. HAR = heterogeneous autoregres-
sive model; AR = autoregressive; NN = neural network, RV = realized volatility.

ing three terms in the neural network model. We also consider the extension of the HAR(c0) model
to HAR(c0)-NN by taking the order of p = 22 as a practical consideration. The hybrid of the two
models, HAR-AR(22)-NN model, is also considered for estimating a moderate number of parame-
ters. The optimal tuning parameter (the number of hidden units in the neural network) is chosen data
adaptively. Therefore, the training, validation, and testing procedure is applied.

We evaluated the model performance by comparing the forecasting error on multinational RVs.
The results are mixed and dependent on the RVs; however, we observed the general tendency that
HAR-NN model performs better than traditional HAR. Hence, we confirm that the addition of a non-
linear term in the HAR model improves forecasting. However, the addition of too many terms, such
as HAR(c0)-NN or HAR-AR(22)-NN, does not necessarily outperform HAR or HAR-NN. This may
be attributed to the fact that estimating too many parameters relative to the sample size may worsen
the out-of-sample forecasting. We also compared prediction intervals between HAR and HAR-NN
models and observed that HAR-NN provides a more reliable prediction interval on peaks and valleys
on turning points, and therefore may be effective in capturing the higher volatility of RVs.
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