• Title/Summary/Keyword: Out-of-Sample Prediction

Search Result 91, Processing Time 0.027 seconds

The Predictive Ability of Accruals with Respect to Future Cash Flows : In-sample versus Out-of-Sample Prediction (발생액의 미래 현금흐름 예측력 : 표본 내 예측 대 표본 외 예측)

  • Oh, Won-Sun;Kim, Dong-Chool
    • Management & Information Systems Review
    • /
    • v.28 no.3
    • /
    • pp.69-98
    • /
    • 2009
  • This study investigates in-sample and out-of-sample predictive abilities of accruals and accruals components with respect to future cash flows using models developed by Barth et al.(2001). In tests, data collected fromda62 Korean KOSPI and KOSDAQ listed firms for ccr4-2007 are used. Results of in-sample prediction tests are similar with those of Barth et al.(2001). Their accrual components model is better than other three models(NI only model, CF only model and NI-total accruals model) in future cash flows predictive ability. That is, in the case of in-sample prediction, accrual components excluding amortization have additional information contents for future cash flows. But in out-of-sample tests, the results are different. The model including operational cash flows(CF only model) shows best out-of-sample predictive ability with respect to future cash flows among above four prediction models. The accrual components model of Barth et al.(2001) has worst out-of-sample predictive ability. The results are robust to sensitivity analyses. In conclusion, we can't find the evidence that accruals and accrual components have predictive ability with respect to future cash flows in out-of-sample prediction tests. This results are consistent with results of Lev et al.(2005), and inconsistent with the belief of accounting standards formulating organizations such as FASB and KASB.

  • PDF

In-Sample and Out-of-Sample Predictability of Cryptocurrency Returns

  • Kyungjin Park;Hojin Lee
    • East Asian Economic Review
    • /
    • v.27 no.3
    • /
    • pp.213-242
    • /
    • 2023
  • This paper investigates whether the price of cryptocurrency is determined by the US dollar index, the price of investment assets such gold and oil, and the implied volatility of the KOSPI. Overall, the returns on cryptocurrencies are best predicted by the trading volume of the cryptocurrency both in-sample and out-of-sample. The estimates of gold and the dollar index are negative in the return prediction, though they are not significant. The dollar index, gold, and the cryptocurrencies seem to share characteristics which hedging instruments have in common. When investors take notice of the imminent market risks, they increase the demand for one of these assets and thereby increase the returns on the asset. The most notable result in the out-of-sample predictability is the predictability of the returns on value-weighted portfolio by gold. The empirical results show that the restricted model fails to encompass the unrestricted model. Therefore, the unrestricted model is significant in improving out-of-sample predictability of the portfolio returns using gold. From the empirical analyses, we can conclude that in-sample predictability cannot guarantee out-of-sample predictability and vice versa. This may shed light on the disparate results between in-sample and out-of-sample predictability in a large body of previous literature.

Characteristics and Prediction of Shear Strength for Unsaturated Residual Soil (풍화잔적토의 불포화전단강도 예측 및 특성연구)

  • 이인모;성상규;양일순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.377-384
    • /
    • 2000
  • The characteristics and prediction model of the shear strength for unsaturated residual soils was studied. In order to investigate the influence of the initial water content on the shear strength, unsaturated triaxial tests were carried out varying the initial water content, and the applicability of existing prediction models for the unsaturated shear strength was testified. It was shown that the soil - water characteristic curve and the shear strength of the unsaturated soil varied with the change of the initial water content. A sample compacted in the lower initial water content needs a higher suction to get the same degree of saturation while the shear strength of a sample with the lower initial water content displays a lower value. In order to apply the existing prediction models of the unsaturated shear strength to granite residual soils, a correction coefficient, α, on the internal friction angle, ø'was added.

  • PDF

Sentiment Shock and Housing Prices: Evidence from Korea

  • DONG-JIN, PYO
    • KDI Journal of Economic Policy
    • /
    • v.44 no.4
    • /
    • pp.79-108
    • /
    • 2022
  • This study examines the impact of sentiment shock, which is defined as a stochastic innovation to the Housing Market Confidence Index (HMCI) that is orthogonal to past housing price changes, on aggregate housing price changes and housing price volatility. This paper documents empirical evidence that sentiment shock has a statistically significant relationship with Korea's aggregate housing price changes. Specifically, the key findings show that an increase in sentiment shock predicts a rise in the aggregate housing price and a drop in its volatility at the national level. For the Seoul Metropolitan Region (SMR), this study also suggests that sentiment shock is positively associated with one-month-ahead aggregate housing price changes, whereas an increase in sentiment volatility tends to increase housing price volatility as well. In addition, the out-of-sample forecasting exercises conducted here reveal that the prediction model endowed with sentiment shock and sentiment volatility outperforms other competing prediction models.

Nonparametric Stock Price Prediction (비모수 주가예측 모형)

  • Choi, Sung-Sup;Park, Joo-Hean
    • The Korean Journal of Financial Management
    • /
    • v.12 no.2
    • /
    • pp.221-237
    • /
    • 1995
  • When we apply parametric models to the movement of stock prices, we don't know whether they are really correct specifications. In the paper, any prior conditional mean structure is not assumed. By applying the nonparametric model, we see if it better performs (than the random walk model) in terms of out-of-sample prediction. An interesting finding is that the random walk model is still the best. There doesn't seem to exist any form of nonlinearity (not to mention linearity) in stock prices that can be exploitable in terms of point prediction.

  • PDF

A Study on the Distress Prediction in the Fishery Industry (수산기업의 부실화 요인 및 예측에 관한 연구)

  • Lee, Yun-Won;Jang, Chang-Ik;Hong, Jae-Beom
    • Proceedings of the Fisheries Business Administration Society of Korea Conference
    • /
    • 2007.12a
    • /
    • pp.167-184
    • /
    • 2007
  • The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut-down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t-test is used to identify the differences in financial variables between the distressed group and the non-distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990$\sim$1993), period 2(1994$\sim$1997), period 3(1998$\sim$2002). The final model built from whole sample appled each three sub-samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub-sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.

  • PDF

A Study on the Distress Prediction in the Fishery Industry (수산기업의 부실화 요인과 그 예측에 관한 연구)

  • Jang, Chang-Ick;Lee, Yun-Weon;Hong, Jae-Bum
    • The Journal of Fisheries Business Administration
    • /
    • v.39 no.2
    • /
    • pp.61-79
    • /
    • 2008
  • The objectives of this paper are to identify the causes of the corporate distress and to develop a distress prediction model with the financial information in fishery industry. In this study, the corporate distress is defined as economic failure and technical insolvency. Economic failure occurs by reduction, shut - down, or change of the business and technical insolvency results from failure to pay the financial debt of companies. The 33 distressed firms from 1991 to 2003 were composed by 14 economic failure companies, 15 technical insolvency companies. 4 companies applied to the both cases. The analysis of distress prediction of fishery companies were accomplished according to the distress definition. The analysis was carried out as two steps. The first step was the univariate analysis, which was used for checking the prediction power of individual financial variable. The t - test is used to identify the differences in financial variables between the distressed group and the non - distressed group. The second step was to develop distress prediction model with logistic regression. The variables showed the significant difference in univariate analysis were selected as the prediction variables. The financial ratios, used in the logistic regression model, were selected by backward elimination method. To test stability of the distress prediction model, the whole sample was divided as three sub-samples, period 1(1990 - 1993), period 2(1994 - 1997), period 3(1998 - 2002). The final model built from whole sample appled each three sub - samples. The results of the logistic analysis were as follows. the growth, profitability, stability ratios showed the significant effect on the distress. the some different result was found in the sub - sample (economic failure and technical insolvency). The growth and the profitability were important to predict the economic failure. The profitability and the activity were important to predict technical insolvency. It means that profitability is the really important factor to the fishery companies.

  • PDF

Estimating the Important Components in Three Different Sample Types of Soybean by Near Infrared Reflectance Spectroscopy

  • Lee, Ho-Sun;Kim, Jung-Bong;Lee, Young-Yi;Lee, Sok-Young;Gwag, Jae-Gyun;Baek, Hyung-Jin;Kim, Chung-Kon;Yoon, Mun-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.1
    • /
    • pp.88-93
    • /
    • 2011
  • This experiment was carried out to find suitable sample type for the more accurate prediction and non-destructive way in the application of near infrared reflectance spectroscopy (NIRS) technique for estimation the protein, total amino acids, and total isoflavone of soybean by comparing three different sample types, single seed, whole seeds, and milled seeds powder. The coefficient of determination in calibration ($R^2$) and coefficient of determination in cross-validation (1-VR) for three components analyzed using NIRS revealed that milled powder sample type yielded the highest, followed by single seed, and the whole seeds as the lowest. The coefficient of determination in calibration for single seed was moderately low($R^2$ 0.70-0.84), while the calibration equation developed with NIRS data scanned with whole seeds showed the lowest accuracy and reliability compared with other sample groups. The scatter plot for NIRS data versus the reference data of whole seeds showed the widest data cloud, in contrary with the milled powder type which showed flatter data cloud. By comparison of NIRS results for total isoflavone, total amino acids, and protein of soybean seeds with three sample types, the powder sample could be estimated for the most accurate prediction. However, based from the results, the use of single bean samples, without grinding the seeds and in consideration with NIRS application for more nondestructive and faster prediction, is proven to be a promising strategy for soybean component estimation using NIRS.

Feasibility study of deep learning based radiosensitivity prediction model of National Cancer Institute-60 cell lines using gene expression

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1439-1448
    • /
    • 2022
  • Background: We investigated the feasibility of in vitro radiosensitivity prediction with gene expression using deep learning. Methods: A microarray gene expression of the National Cancer Institute-60 (NCI-60) panel was acquired from the Gene Expression Omnibus. The clonogenic surviving fractions at an absorbed dose of 2 Gy (SF2) from previous publications were used to measure in vitro radiosensitivity. The radiosensitivity prediction model was based on the convolutional neural network. The 6-fold cross-validation (CV) was applied to train and validate the model. Then, the leave-one-out cross-validation (LOOCV) was applied by using the large-errored samples as a validation set, to determine whether the error was from the high bias of the folded CV. The criteria for correct prediction were defined as an absolute error<0.01 or a relative error<10%. Results: Of the 174 triplicated samples of NCI-60, 171 samples were correctly predicted with the folded CV. Through an additional LOOCV, one more sample was correctly predicted, representing a prediction accuracy of 98.85% (172 out of 174 samples). The average relative error and absolute errors of 172 correctly predicted samples were 1.351±1.875% and 0.00596±0.00638, respectively. Conclusion: We demonstrated the feasibility of a deep learning-based in vitro radiosensitivity prediction using gene expression.

Effect of particle size and scanning cup type for near infrared reflection on the soil property measurement

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • The purpose of this research was to find out suitable soil sample preparation and sample holding tools for NIR reflection radiation for estimating soil components. NIR reflectance was scanned at 2nm intervals from 1,100 to 2,500nm with an InfraAlyzer 500(Bran+Luebbe Co.). Coarse(2.0mm) and fine(0.5mm) soil sample and various sample holding tools were used to obtain mean diffuse reflection of the soil for the calibration and validation of the calibration set in estimating moisture, organic matter and total nitrogen of the soils. Multiple linear regression was used to obtain the best correlation of NIR spectroscopy method. Correlation of NIR spectroscopy method. Correlation of NIR spectra for finely and coarsely sized soil did not show much difference. The standard errors of prediction(SE) using different types of sample holding tools for organic matter, total nitrogen and soil moisture were better than 0.765, 0.041 and 0.63% respectively. From the results it can be concluded that NIR spectroscopy with flow type cell could be used as a fast routine testing method in quantitative determination of organic matter, total nitrogen and soil moisture.