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Nonparametric Stock Price Prediction

Sung-Sup Choi* and Joo Hean Park**

Abstract

When we apply parametric models to the movement of stock prices, we don’ t know whether

they are really correct specifications. In the paper, any prior conditional mean structure is not
assumed. By applying the nonparametric model, we see if it better performs (than the random
walk model) in terms of out-of-sample prediction. An interesting finding is that the random
walk model is still the best. There doesn’t seem to exist any form of nonlinearity (not to men-

tion linearity) in stock prices that can be exploitable in terms of point prediction.

] . Introduction

The issue of correctly specifying the asset return distribution has received substantial
attention in the literature. In the context of stock returns, the history goes as far back
to the turn of the century. Bachelier (1900) developed a model in which the lower fre-
quency asset price changes, being the sum of a very large number of high-frequency
transaction price changes, are approxi-mately normal.

Empirically, however, high frequency data such as the daily or weekly data do not
confirm this prediction, being approximately symmetric but nevertheless highly lep-
tokurtic. These char-acteristics led researchers like Mandelbrot (1963) to the use of
symmetric stable distributions for return-generating processes. The symmetric stable
distributions, however, contradict the empiri-cal fact that the aggregated asset return
data follow normal distribution, even though capturing major characteristics of high
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frequency data.”

In dealing with high frequency data, a more sophisticated parametric class of model,
GARCH model, has been developed and popularized. In this model, the variance of
the error term at time ¢, conditional on past information, is a nonlinear function of past
error terms(AR part) and past error variances(MA part). GARCH model creates sim-
ulated data series that exhibit persistence and busting, which in turn accounts very well
for the stylized facts of high frequency data.? In addition to these favorable properties,
its unconditional density converges to normality under temporal aggregation.

Now, a poéSible queéstion is whether the GARCH model is the correct specification
of asset return dynamics. If this GARCH characterization is correct, any sort of nonlin-
earity in the condi-tional mean (not to mention linearity) cannot be exploited to
impfdve po{nt ‘p‘redictions. Hsieh(1989) showed that, using exchange rate, GARCH fil-
tering does not remove all the hidden struc-tures from the data. In a theoretical devel-
opment, Sims (1984) shows that general equilibrium asset pricing models imply martin-
gale asset-price behavior only at arbitrarily short horizons. The message is that neither
theoretical nor empirical results can rule out the potential presence of more complicat-
ed dynamics in asset returns.

In fact, strong evidence of nonlinearity has been found in the prediction errors of lin-
ear models.” The nonlinearity may be either in conditional mean park or in the error
term, otherwise in both. However, the source of nonlinearity has not yet been identi'-
fied. If the conditional mean part is in itself nonlinear, the source of nonlinearity in the
prediction error of the linear model cannot be identified because of misspecification of
the conditional mean part. The empirical fact that no nonlinear model outperforms the
random walk systematically in the prediction, may be explained by two.possible rea-
sons. One is that the conditional mean is in itself linear while the other is that the true
nonlinear conditional mean has not yet found since the class of plausible alternative

non-linear models are huge.

1) Note that the stable Paretian family remains stable Paretian under temporal aggregation, and this point was
forcefully argued by Fama(1976).

2) A variety of high frequency asset returns is described ad linearly unpredictable, but conditionally het-
eroskedastic. and unconditionally leptokurdic.

3) for example, Granger and Anderson{1978), Hinich and Patterson(1985), Engle, Lillien and Robins(1987),
Hsieh(1989). Scheinkman and LeBaron(1989) detect statistically significant nonlinearity in asset prices.
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In.terms of theoretical works, there currently exist few economic theories that yield a
unique a priori specification of a nonlinear model to test. Grandmont(1985) proposed
an alternative dynamic structure which follows nonlinear deterministic dynamic paths.
Unfortunately, however, he found that from very simple models of intertemporal opti-
mization behavior there is an infinite ‘quantity of dynamic paths the economy can take,
including chaotic.

On the other hand, Meese and Rogoff (1983) showed empirically that a random walk
model outperforms a variety of other economic models in terms of out-of-sample fore-
cast.” All the models considered by them, however, are linear models; they didn’ t look
at a validity of nonlinear models. The overwhelming variety of plausible candidate non-
linear models makes model selection a difficult task. In fact, é'ihrgé variety of nonlin-
ear models that have received attention lately” may be a small subset of the class of
plausibie yet unfound nonlinear models. :

In this paper, we investigate whether the random walk model for the(high frequency)
stock price data will be outperformed in terms of out-of-sample forecast. The design of
the research becomes as follows: to determine initially if stock returns have complicat-
ed structure, we fit a random walk model, get the residuals, and do the Brock-Dechert-
Scheinkman (1987) (BDS) test. Recognizing that the GARCH model has been well
known to capture some form of nonlinearities that might exist in real data, we also fit
the GARCH model, and apply the same steps. If there remain hidden structures not
captured by a random walk and/or GARCH form of nonlinear models, the BDS test
will be rejected. When rejected, we need to choose an alternative model.

In this study, we do not specify the conditional mean function parametrically and
make use of kernel nonparametric estimation techniques in estimating conditional
mean. The validity of more complicated return structure will then be considered in
terms of out-of-sample forecast.” More precisely, the out-of-sample forecast based on
nonparametric form will be compared to that of random walk. If the nonparametric

model outperforms, this implies that the nonlinearity would be embedded in the condi-

4) Their candidate models included a flexible price monetary model. a sticky price monetary model. a sticky
price monetary model with current account effects. six univariate time series models. a vector autoregressive
model, and the forward rate.

5) For example. nonlinear moving, average. bilinear. threshold. exponential autoregressive. and so forth.
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tional part so the search for more complicated models will be useful and the random
walk model is not going to be as much valid. Otherwise, the ture prediction model may
be a linear model with errors having a nonlinear structure.

In the next section, the random walk hypothesis, the simple form of nonlinear model
(which is the GARCH model in this case), the BDS test, and the nonparametric kernel
estimation technique will be very briefly discussed. And then the empirical results and

further research suggestions follow in the last section.

I . RANDOM WALK MODEL, GARCH MODEL, BDS TEST,
KERNEL ESTIMATION

1. RANDOM WALK MODEL
The hypothesis of market efficiency implies the following price equation form;

PO=E[ £ 20 1160 &)

where P(¢), D(f) and I(¢) represent stock price, dividend and the set of information
available to market participants at time ¢ respectively and r is a discount rate. With a
transversality condi-tion, the above equation is equivalent to the statement that, for all
t:

Po=£[ 52 e ®

or to the statement that

6) Meese and Rogoff(1983) have shown that a random walk model outperforms any other form of linear models
for exchange rate process (i.e., a random walk model is the best linear model in terms of out-of-sample fore-
cast). Although the similar empirical studies need to be done among linear models with stock return process,
a random walk model is likely to be the best linear model in terms of out-of-sample forecast with stock price
data as well. Assuming that a random walk model is the best, we effectively investigate the validity of nonlin-
ear model by comparing a random walk model with that of non-parametric form in terms of out-of-sample
forecast.
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P(t+1)  D(r)
E[R()]=E [—;@—um_l = ©)
At the same time, the above equation implies the following :
R()=r+¢(t) (4)

where R(t) denotes return at time t and &(f) is serially uncorrelated and orthogonal to
any element to I(¢). Market efficiency is normally tested by adding regressors drawn
from I(t) to the above equation and testing the hypothesis that their coefficients equal

zero, or by testing the hypothesis that &(¢) follows a white noise process.

2. GARCH MODEL

Let y(f) be a discrete time stochastic process. In general, the GARCH (p, q) regression

model is determined as follows :

y(t) | H)~N(x(2)" 6, k() 5)
where

e(f)=y())—x(9)'8, (©)

h(O=a(0)+ 3 a)e(t=i)+ 3 FGh(—)) ()

where p, ¢>0; a(i) >0 for i=0, 1, 2, -, q; B(j) >0 for j=0,1,2, ---, p
The stability condition for this regression model is given by

"5 o) +B()<1 ®)

which corresponds to having the characteristic roots of the expansion of unconditional

residual variance lie outside the unit circle.
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The estimation of a GARCH regression model can be done using log likelihood max-
imization. Identification of p and g can be achieved using standard Box-Jenkins on the
squared OLS residuals. In this paper, the GARCH (1,1) model is specified as an alter-

native to the random walk model:

R(t)=r+ (), where

(1) | I{(t—1)~N(O, h(2)), h(t)= v+ ar?(t—1)+ Bih(t—1) ©

3. BDS TEST

The BDS statistic, developed by Brock, Dechert, and Scheinkman (1987), tests the null
that the data is independently and identically distributed(iid) against the alternative of
either nonlinear stochastic or deterministic structure. The test looks at the N-space fill-
ing properties of N-streams (streams of length N) of data. If the test discovers epugh
areas in N-space with low observation density, it will reject the null of random iid data.
If the data were truly random, N-space would not contain any holes, but would be
filled givén enough observations. It needs to be noted that the BDS statistic cannot be
used globally in N-space as it is highly dependent on the underlying distribution of the
data. In other words, the global implications of the intuitive description above are used
only for expository purposes. The BDS test is evaluated locally in the neighborhood of
an N-stream.

Given a time series x(f) where t= 1, 2,---, T, let an N-history of x(¢) be defined by
x(t, N)=x(t),~, x(t+N—1). The correlation dimension(Cw(e, ©)), developed by

Grassberger and Procaccia (1983), is defined as follows:

Cx(e, ®)=prob[(x(t, N), x(s, N) [l x(t, N)=x(s, N) || <¢] (10)

where the double vertical line( [- | ) indicates the max norm and the epsilon(e) is a
number from the non-negative real line. The correlation dimension thus measures the
fraction of the N-histories that are epsilon away from one another as the sample size

goes to infinity. If the process x(¢) is truly iid, then it can be shown that :
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prob[(x(t, N), x(s, N) || x(t, N)—x(s, N) || <¢]

I - : . . 11
= T] probl(x(t=+)), x(s+]) |1 x(t+])—x(s+)) 1 <] (11)
If we assume that the data generating process is stationary, then it follows that:
Ci(e, @)=[Ci(e, )} 12)

In finite samples, we are able to derive a central limit theorem for iid and weakly
dependent processes such that the sample correlation dimensions converge to the pop-

ulation dimensions de-fined above. We can therefore show the following;
T?[Ci(e, @) =[Ci(e, )]l = N(0, Vi(e)) (13)

where Va(¢) is the covariance matrix, and Hsieh and LeBaron(1988) showed that this
can be estimated in sample.

Conceptually, the BDS test looks at the dispersion of the points in a number of
spaces with dimension going to from 2 to n. This dispersion will be either in line or at
odds with the assumption of white noise. The BDS test then amounts to a test of the
difference between the dispersion of the observed data in these consecutive spaces with
the dispersion that a white noise process would generate in these same spaces. For
details, readers are advised to consult Brock (1986) or the extensive survey of Eckman
and Ruelle (1985). In this paper, the residuals from the random walk model and the
GARCH(1,1) model (after normalizing the variances) are run through the BDS pro-
gram, written by W. D. Dechert. As we are investigating low order structure such as
dimension 2, rejections of the iid null at low embedding dimensions will be of special

interest.

4. NONPARAMETRIC KERNEL ESTIMATION

The conditional expectation function represented by equation (14) is usally used for

out-of-sample forecast.
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s =Ely 1= Sfiyody= T ay (19

A sample analog estimator of the conditional expectation function can be obtained
by substituting nonparametric estimates of the underlying conditional densities into the
above equation(14). Different nonparametric methods make use of different nonpara-
metric estimates of the underlying densities.

Nevertheless, all of nonparametric estimators have the following form:

20r)= 3 Wr(x(t): x)y(0) (15)

where Wr is a weighting function, varying with sample size T. A nonparametric esti-

mate of g(x*) is simply a weighted average of the dependent variables y(f). The rule of

weighting is that the nearer the distance between x and x* is (in some measure), the
more weight x will get.

~ The nonparametric estimation method employed in this paper is the kernel method,

the weighting function of which will be as follows :

<[y |

sk ]

Wi(x(t); x*)= (16)

where K(.) is a kernel function, #(T) is a bandwidth depending on sample size. The

kernel regression estimates at x* is defined accordingly :

sk [ ]

Under regularity conditions, the kernel estimator is proven to be consistent and

g(x*)= (17)

asymptotically normally distributed.”

7) Robinson(1983) extended the consistency and asymptotic normality results to time-series context; it requires a little
bit more strict conditions.



Nonparametric Stock Price Prediction 229

The kernel methods reflect a few judgmental decisions, such as size of bandwidth and
choice of kernel function. In fact, theory gives only a set of conditions which the band-
width and the kernel function must satisfy. A symmetric density function is often taken
for a kernel function.

Many Monte-Carlo studies, however, show that the estimation result is relatively
robust to the choice of kernel functions. Of far greater importance is the choice of
bandwidth size, h(T), which determines how sharply the weights reduce as the distance
between x* and x(t) becomes widened. The bandwidth must go to zero with sample

size, but at a slower rate. The condition the band-width should satisfy is the following:
WT)—0, Th(t)" > w,as T — o (18)

where p is the number of explanatory variables. In doing so, the shrinking bandwidth
size contains progressively nearer points to x*. This allows the reduction of bias along
with variance, enabling consistency to be achieved. The practical problem is, however,
that there exists no way of determining the size of bandwidth in a finite sample. For
this reason, several bandwidths will be considered in this paper.

In our dynamic model, the stochastic conditioning variables x(t) is composed of
lagged dependent variables; x(¢)={y(¢t—1), -, y(t—p)}. Thus, we shall work with the

following structure:

y(O)=g(y(t=1), -, y(t—p))+ (o), 19
E[e()|y(t=1), -+, y(t=p)] =0
where g(.) is a unknown function. The future value y(¢) is predicted by estimating
g(y(t—1), -+, y(t—p)) nonparametrically. This prediction scheme has an intuitive inter-
pretation. Suppose we try to predict y(f) based on {y(t—1), -+, y(t—p)}. Out of a whole
series of y(t—j), the subseries {y(s—1), -+, y(s—p), s<t} which has the most similar
pattern to the conditioning vector {y(t—1), ---, y(¢—p)} will be given the highest
weights to y(¢). Likewise, the subseries having less similar pattern will have less

weights. The idea is to predict the future in terms of the most exact experiences that



230 Nonparametric Stock Price Prediction

we’ ve gone through.

I . EMPIRICAL IMPLEMENTATION
1. DATA DESCRIPTIONS

The initial data set consists of more than 6,000 daily stock returns (from Jan. 1, 1962 to
Dec. 31, 1986) on the value-weighted portfolio of the Center for Research in Security
Prices at the University of Chicago (CRSP). With a daily observation interval, the bias-
es associated with nontrading, the bid-ask spread, asynchronous prices, and others
(including weekend effect and/or Monday effect) may become statistically significant.
A formal model of the market microstructure may be needed to deal with the biases,
which will probably make the analysis complexed. Here, we use 1279 weekly stock

return data constructing from the initial data in order to avoid complexities.

2. EMPIRICAL RESULTS

We do first in-sample analysis of the correlation dimension test designed by Brock,
Dechert, and Scheinkman (1987). This test is done for the residuals of both random
walk model and GARCH model.

Under the null hypothesis of an iid series, the BDS statistic is distributed asymptoti-
cally as a standard normal random variable. BDS procedure may be useful for testing
iid behavior when likely alternatives are not known a priori. Nevertheless, there are
some caveats that need to be kept in mind. Rejections of iid behavior are sometimes
taken to imply that the series is linearly or nonlinearly forecastable. But, this may not
always be the case since the rejection could be due to outliers, structural shifts, condi-
tional dependence in even-ordered moments, etc. Even if a time series is linearly or
nonlinearly predictable, the BDS test is unable to distinguish between linear stochastic,
linear deterministic, nonlinear deterministic, or nonlinear stochastic data generating

process.

In any application of a test that relies on its asymptotic distribution, we must make
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sure that the asymptotic distribution is actually well approximated by the finite sample
distribution. For the BDS statistics, there are more complications since the BDS test is
computed for a given embedding dimension N and a given disturbance e(in number of
standard deviations of the data, o). The choice of N and o must therefor be determined
priori. Many Monte Carlo simulations suggest that the embedding dimension N should
be 5 or lower, e should be between 0.50 to 20. And the asymptotic distribution can be
approximated well by the finite sample distribution of the BDS statistic for 500 or
more observations.

We pick N=1, £=0.50, 0.750, 0, 1.250, 1.50 and our data points are 6,000 which may
be sufficient to approximate the asymptotic distribution. BDS test results appear in
table 1. For all cases considered, the BDS test finds strong evidence of non-iid behav-
iors.” As previously mentioned, however, the test is silent on the form of likely devia-
tions from the null. In particular, we would expect the BDS test to reject iid behavior
due to the well known conditional heteroskedasticity in error terms even if there were
no presence of nonlinearity in conditional mean part. For this reason, We proceed to fit
the GARCH parametric model in order to filter out the possible conditional het-
eroskedasticity, and normalize the residuals,” and then reapply the BDS tests which
also appear in table I. Again, the BDS test still finds strong evidence of non-iid behav-
i078.

Now, let’ s begin with the nonparametric kernel estimation. To start with, we choose
the normal density as a kernel function. As we all know, the normal density is repre-
sented by two moments. The first moment, mean, is chosen by zero. The second
moment, variance-covariance matrix, is taken by estimates of the autocovariances from
the sample.” With respect to the bandwidth A(T), we perform a sensitivity analysis.
The bandwidth size is taken by

1
WT)=cT"™", where ¢, d>0 (20)

8) Numbers in table I are z-values. all of which indicate significance at the 1 percent significance level.

9) Having fitted GARCH(1.1) model. we get the series of adjusted residuals and variances. Then the normalization is
done by dividing the adjusted residuals by the variance: if GARCH model is correct specification. this normalization
must generate iid process.

10) Many Monte-Carlo studies show that a good nonparametric estimate can be cbtained by taking a kernel function

which reflects the structure of the underlying population as much as possible.
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Table 1. BDS test results for the residuals of random walk model

0.50* 0.750 o 1.25¢ 150
residuals of random 734 833 834 828 8.60
walk model
residuals of the
84 23 47 1425 18.67
GARCH(1.1) model >8 > 10

* @ is the sample standard deviation. The embedding dimension is 2. so the test proceeds by comparing 2-histories
using the sup norm.

Fixing d=1, we explore a wide range of ¢ from 0.2 to 1 in order to see the sensitivity
of the analysis to bandwidth size.

We now turn to the one-step-ahead out-of-sample prediction analysis. We estimate
non-parametric autoregressions of order 1 and 3. Each model is estimated on the basis
of the most up-to-date information available when forecasting. This is done by using
rolling regression to reestimate each model for each forecasting period. In out-of-sam-
ple forecast, the choice of the first period is arbitrary. We reserve the last 279 samples -
for the out-of-sample forecast. It is likely that the result for the one-step-ahead would
be reinforced for the one that performs better as we increase the step size. Since the
focus here is on the high frequency data, we don’t deal with the issue related to the
low frequency data, such as mean reversion. Mean reversion is found to follow the
business cycle frequency, 3-5 years. If this is the case, the 24 years of data (which is
sampling period of this paper) is not big enough in detecting such a phenomenon.
Remember that a big sample in. financial data is not something that we can determine
by looking at number of observations.

The results of the out-of-sample forecast for the nonparametric models of autoregres-
sion of order 1 and 3 (in comparison with those for the random walk model) are
reported in table II. A wide range of bandwidth, c, from 0.2 to 1.0, is also reported, but
as we mentioned earlier the results are not sensitive to the changes in bandwidth.
RMSE stands for Root Mean Square Error while LQ and UQ indicate Lower
Quantile, Upper Quantile, respectively. LQ, UQ, and MEDIAN are calculated based
on the order statistics of the absolute value of residuals. Thus, the lower value of LQ,
UQ. MEDIAN, the better out-of-sample forecast. The striking feature of the empirical
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Table 2. One Step shead out-of-sample forecast comparison

band— MEDIA
Moglel width RMSE La N uQ
Nonparametric 02 13.955 3.9204 8.0758 13.5061
Model : 04 13.6060 3.9481 8.0758 13.0441
y(O)=gy(t—1))+¢) 0.6 13.5327 3.9113 7.9850 13.0441
0.8 13.4880 4.0055 7.9479 12.9781
1.0 13.4509 4.1326 7.9064 13.2481 -
Nonparametric 0.2 17.3082 5.0769 10.7254 17.1009
Model : 04 16.1925 4.3857 10.0977 16.1530
y(O)=gy(t—1),y(t—2), 0.6 1527119 42931 9.0701 15.6103
y(t=3) ) +(®) 0.8 14.6167 4.2003 8.7164 14.5693
1.0 14.2007 4.0373 8.6061 13.8199
Random Walk N/A 12.8832 40252 7.6204 13.1276

*All entries are converted into stock prices from the stock returns data, where the basis price is set to be 100.

result is that the random walk model almost invariably has the lowest RMSE across all
the different bandWidths, which means the random walk model outperforms the non-
parametric model in terms of out-of-sample forecast. The empirical results summarized
in table II together with table I, imply that a true underlying asset return model would
have a linear conditional mean and a nonlinear structure of error terms. Therefore, it
may not be useful to search for more complicated nonlinear conditional mean model to

improve the out-of-sample forecast.

3. SUGGESTIONS FOR FUTURE WORKS

The thrust of this paper is this: when we fit some parametric model, we don’ t know
whether it is really a correct specification. Thus, we don’t impose any a priori condi-
tional mean structure; we neither force it to be linear, nor it to be nonlinear. An inter-
esting finding of this paper is that the random walk model is still the best in terms of
out-of-sample forecast. The well-known work by Meese and Rogoff (1983) provides
graphic illustration of the failure of a variety of other linear models to outperform the

random walk model in out-of-sample prediction in terms of exchange rate data. This
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result is reinforced by Diebold and Nason (1989) again with exchange rate data. Their
finding seems to be that there doesn’t exist any form of nonlinearity (not to mention
linearity) exploitable in terms of point prediction with exchange rate data. Our study
shows that their finding still prevails in terms of stock price data. From the findings
that no nonparametric model seems to outperform the random walk model in terms of
out-of-sample forecast, the true stock price model would be sketched like a linear con-
ditional mean with a error having nonlinear structure.

Closing the concluding remarks, we need to indicate some problems in this study for
p.ossible future works.

First, we have to indicate two stock market anomalies relevant to this study among
others. _

One is the week of the month effect, and the other is the January effect. Both effects
would show up in weekly data which are used here. The week of the month effect was
found by Ariel (1987) who showed that for the period 1963 to 1981 all of the market’s
cumulative advance occurred around the first half of the month, the second half con-
tributing nothing to the cumulative increase. The January effect can be removed by
using a dummy variable. But, there are several recent studies which show that this
January effect is primarily a size effect and appears to be insignificant in the value
weighted index. Since we are using the value weighted index, it seems acceptable to
ignore the January effect.

Second, in terms of data-related problem, we might have ‘time deformation pro-
blem’ ; economic time and calendar time might differ. For example, the appropriate
time scale for stock markets might ‘speed up’ in calendar time in periods when an usu-
ally large amount of news must be processed by the market."™ Stock (1987) explored
the possibility that the relationship between economic and calendar time depends on
the economic history of certain variables which indicate acceleration or deceleration of
economic time, and develops a test statistic for time deformation which amounts to a
set of linear restrictions in a vector autoregression (VAR). More careful empirical
study needs to be filtered through this kind of test. But, given the fact that time defor-

11) Clark's(1973) model of this phenomenon subordinates asset prices to an information arrival process; Clark shows
how this framework can potentially explain the observed leptokurtosis in asset returns.
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mation generates spurious nonlinearity, we doubt that it affects the result of this study
that the random walk model can’ t be outperformed by the nonparametric model.
Lastly, including our study, most nonparametric evidence for incremental predictabili-
ty of financial asset returns above and beyond simple random walks is negative. It
appears that parametric methods of prediction that have high power at detecting and
forecasting structures “when we know what we are looking for” might have to be used
to have more success at predicting financial asset returns. But, as we indicated earlier,
the overwhelming variety of plausible candidate models makes parametric model selec-
tion a difficult task. Maybe, what is really needed is an economic theory which might
give a spécific guidance as to appropriate functional form of parametric model. Even
after we settle on this issue of choosing a parametric form, it might be necessary to
measure predictive gains in units like trading profits which are more mean-ingful than
usual measures such as reduction in root mean squared error. Furthermore, we might
also need to use more delicate statistical methods such as those used in the Brock,

Lakonishok, LeBaron (1990) since the gains are likely to be small.
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