• Title/Summary/Keyword: Osteoclast differentiation

Search Result 243, Processing Time 0.027 seconds

Gene Expression Profiling in Osteoclast Precursors by Insulin Using Microarray Analysis

  • Kim, Hong Sung;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.827-832
    • /
    • 2014
  • The balance between bone formation by osteoblasts and destruction of mineralized bone matrix by osteoclasts is important for bone homeostasis. The increase of osteoclast differentiation by RANKL induces bone diseases such as osteoporosis. Recent studies have shown that insulin is one of main factors mediating the cross-talk between bone remodeling and energy metabolism. However, the systemic examination of insulin-induced differential gene expression profiles in osteoclasts has not been extensively studied. Here, we investigated the global effects of insulin on osteoclast precursors at the level of gene transcription by microarray analysis. The number of genes that were up-regulated by ${\geq}1.5$ fold after insulin treatment for 6 h, 12 h, or 24 h was 76, 73, and 39; and 96, 83, and 54 genes were down-regulated, respectively. The genes were classified by 20 biological processes or 24 molecular functions and the number of genes involved in 'development processes' and 'cell proliferation and differentiation' was 25 and 18, respectively, including Inhba, Socs, Plk3, Tnfsf4, and Plk1. The microarray results of these genes were verified by real-time RT-PCR analysis. We also compared the effects of insulin and RANKL on the expression of these genes. Most genes had a very similar pattern of expressions in insulin- and RANKL-treated cells. Interestingly, Tnfsf4 and Inhba genes were affected by insulin but not by RANKL. Taken together, these results suggest a potential role for insulin in osteoclast biology, thus contributing to the understanding of the pathogenesis and development of therapeutics for numerous bone and metabolic diseases.

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin;Jung, Suhan;Jang, Ji Sun;Mo, Shenzheng;Kwon, Jun-Oh;Kim, Min Kyung;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.749-760
    • /
    • 2022
  • Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.

Effect of Saururus Chinensis in RANKL-induced Osteoclast Differentiation (삼백초 추출물이 뼈 파괴세포 분화에 미치는 효과)

  • Kim, Jung Young;Hyuk, Jungjong;Lee, Myeung Su;Lee, Chang Hoon;Kim, Yun Kyung;Jeon, Byung Hoon;Kwak, Han Bok;Kim, Ju-Young;Choi, Min-Kyu;Kim, Jeong Joong;Oh, Jaemin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.869-873
    • /
    • 2012
  • Balance between bone-forming osteoblasts and bone-resorbing osteoclasts is important in bone homeostasis. Unusual balance between bone-forming osteoblasts and bone-resorbing osteoclasts leads to bone diseases, such as osteoporosis. Saururus chinensis has been widely used in oriental medicine. Saururus chinensis has been known that has antioxidant and anticancer effect. But, the effect of Saururus chinensis in osteoclast differentation remains unknown. We examined the effect of Saururus chinensis in receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. From the results of our study, we found that saururus chinensis clearly inhibited RANKL-induced osteoclast differentiation in bone marrow macrophages (BMM) in a dose dependent manner without toxicity. Saururus chinensis inhibited the phosphorylation of JNK, P38, AKT, and ERK induced by RANKL. The mRNA expression of NFATc1, TRAP, and OSCAR induced by RANKL was inhibited by Saururus chinensis treatment. Moreover Saururus chinensis suppressed the protein expression of c-Fos and NFATc1 in BMMs treated with RANKL. These results suggest that Saururus chinensis may be a useful drug in the treatment of bone-related disease.

Human Periodontal Ligament Fibroblasts Support the Osteoclastogenesis of RAW264.7 Cells (치주인대섬유아세포가 파골세포분화에 미치는 영향)

  • Lee, Ho;Jeon, Yong-Seon;Choi, Seoung-Hwan;Kim, Hyung-Seop;Oh, Kwi-Ok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.733-744
    • /
    • 2002
  • The fibroblasts are the principal cells in the periodontal ligament of peridontium. As the periodontal ligament fibroblasts (PDLF) show similar phenotype with osteoblasts, the PDLF are thought to play an important role in alveolar bone remodeling. Cell-to-cell contacted signaling is crucial for osteoclast formation. Recently it has been reported that PDLJ enhance the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The aims of this study were to $clarify\;^{1)}$ the mechanism of PDLF-induced osteoclastogenesis $and\;^{2)}$ whether we can use preosteoclast cell line instead of primary hematopoietic preosteoclast cells for studying the mechanism of PDLF-induced osteoclastogenesis. Osteoclastic differentiation of mouse macrophage cell line RAW264.7 was compared with that of mouse bone marrow-derived M-CSF dependent cell (MDBM), a well-known hematopoietic preosteoclast model, by examining, 1) osteoclast-specific gene expression such as calcitonin receptor, M-CSF receptor (c-fms), cathepsin K, receptoractivator nuclear factor kappa B (RANK) ,2) generation of TRAP(+) multinucleated cells (MNCs), and 3) generation of resorption pit on the $OAAS^{TM}$ plate. RAW264.7 cultured in the medium containing of soluble osteoclast differentiation Factor (sODF) showed similar phenotype with MDBM-derived osteoclasts, those are mRNA expression pattern of osteoclast-specific genes, TRAP(+) MNCs generation, and bone resorbing abivity. Formation of resorption pits by osteoclastic MNCs differentiated from sODF-treated RAW264.7, was completely blocked by the addition of osteoprotegerin (OPG), a soluble decoy receptor for ODF, to the sODF-containing culture me야um. The effects of PDLF on differentiation of RAW264.7 into the TRAP(+) multinucleated osteoclast-like cells were examined using coculture system. PDLF were fxed with paraformaldehyde, followed by coculture with RAW264.7, which induced formation of TRAP(+) MNCs in the absence of additional treatment of sODF. When compared with untreated and fixed PDLF (fPDLF), IL-1 ${\beta}$-treated, or lipopolysaccha-ride-treated and then fixed PDLF showed two-folld increase in the supporting activity of osteoclastogenesis from RAW264.7 coculture system. There were no TRAP(+) MNCs formation in coculture system of RAW264.7 with PDLF of no fixation. These findigs suggested that we can replace the primary hematopoietic preosteoclasts for RAW264. 7 cell line for studying the mechanism of PDLF-induced osteoclastogenesis, and we hypothesize that PDLF control osteoclastogenesis through ODF expression which might be enhanced by inflammatory signals.

The effect of taurine and alendronate on the osteoclast differentiated by the sonicated extracts of Porphyromonas Gingivalis in vitro

  • Kim, Hyung-Su;Lee, Seung-Jong;Lee, Chan-Young;Kum, Kee-Yeon
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.566.2-566
    • /
    • 2001
  • The objective of this study was to investigate the ability of alendronate and taurine in inhibiting in vitro osteoclast differentiation induced by bacteria. Whole cell sonicates of P. gingivalis were used as an osteoclast-stimulating factor in a mouse coculture system and differentiated osteoclasts were confirmed by tartrate-resistant acid phosphatase (TRAP) staining. Alendronate at the concentrations of 10-7, 10-6, and 10-5 M, and taurine at the concentrations of 4mM, 8mM, and 12mM were used.(omitted)

  • PDF

Transcriptional Induction of Cyclooxygenase-2 in Osteoclast Precursors is Involved in TRANCE-induced Osteoclastogenesis

  • Han, Song-Yi;Lee, Na-Kyung;Kim, Kyung-Hee;Lee, Soo-Young
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.102-103
    • /
    • 2003
  • Osteoclast are specialized cells derived from the monocyte/macrophage haematopoietic lineage that develop and adhere to bone matrix, then secrete acid and lytic enzymes that degrade it in a specialized, extracellular compartment. Regulation of osteoclast differentiation is central to the understanding of the pathogenesis and treatment of bone diseases such as osteoporosis. (omitted)

  • PDF

Biological characteristics of osteoporosis drugs: the effect of osteoblast-osteoclast coupling

  • Kim, Sung-Jin;Moon, Seok Jun;Seo, Jeong Taeg
    • International Journal of Oral Biology
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Osteoporosis is a common disease characterized by bone mass reduction, leading to an increased risk of bone fracture, and it is caused by an imbalance of osteoblastic bone formation and osteoclastic bone resorption. Current osteoporosis drugs aim to reduce the risk of bone fracture, either by increasing osteoblastic bone formation or decreasing osteoclastic bone resorption. However, osteoblasts and osteoclasts are closely coupled, such that any reagent altering the differentiation or activity of one eventually affects the other. This tight coupling between osteoblasts and osteoclasts not only limits the therapeutic efficacy but also threatens the safety of osteoporosis drugs. This review will discuss the biological mechanisms of action of currently approved medications for osteoporosis treatment, focusing on the osteoblast-osteoclast coupling.

Effect of Cytokines and bFGF on the Osteoclast Differentiation Induced by $1\;{\alpha},25-(OH)_2D_3$ in Primary Murine Bone Marrow Cultures

  • Chae, Han-Jung;Kang, Jang-Sook;Bang, Byung-Gwan;Cho, Seoung-Bum;Han, Jo-Il;Choi, Joo-Young;Kim, Hyung-Min;Chae, Soo-Wan;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.539-546
    • /
    • 1999
  • Bone is a complex tissue in which resorption and formation continue throughout life. The bone tissue contains various types of cells, of which the bone forming osteoblasts and bone resorbing osteoclasts are mainly responsible for bone remodeling. Periodontal disease represents example of abnormal bone remodeling. Osteoclasts are multinucleated cells present only in bone. It is believed that osteoclast progenitors are hematopoietic origin, and they are recruited from hematopoietic tissues such as bone marrow and circulating blood to bone. Cells present in the osteoclast microenvironment include marrow stromal cells, osteoblasts, macrophages, T-lymphocytes, and marrow cells. These cells produce cytokines that can affect osteoclast formation. In vitro model systems using bone marrow cultures have demonstrated that $IL-l{\beta},\;IL-3,\;TNF-{\alpha},$ bFGF can stimulate the formation of osteoclasts. In contrast, IL-4 inhibits osteoclast formation. Knowledge of cytokines and bFGF that affect osteoclast formation and their capacity to modulate the bone-resorbing process should provide critical insights into normal calcium homeostasis and disorders of bone turnover such as periodontal disease, osteoporosis and Paget's disease.

  • PDF

Hexane-Soluble Fraction of the Common Fig, Ficus carica, Inhibits Osteoclast Differentiation in Murine Bone Marrow-Derived Macrophages and RAW 264.7 Cells

  • Park, Young-Ran;Eun, Jae-Soon;Choi, Hwa-Jung;Nepal, Manoj;Kim, Dae-Keun;Seo, Seung-Yong;Li, Rihua;Moon, Woo-Sung;Cho, Nam-Pyo;Cho, Sung-Dae;Bae, Tae-Sung;Kim, Byung-Il;Soh, Yun-Jo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.417-424
    • /
    • 2009
  • Osteoclasts, derived from multipotent myeloid progenitor cells, play homeostatic roles in skeletal modeling and remodeling, but may also destroy bone in pathological conditions such as osteoporosis and rheumatoid arthritis. Osteoclast development depends critically on a differentiation factor, the receptor activator of NF-${\kappa}B$ ligand (RANKL). In this study, we found that the hexane soluble fraction of the common fig Ficus carica (HF6-FC) is a potent inhibitor of osteoclastogenesis in RANKL-stimulated RAW264.7 cells and in bone marrow-derived macrophages (BMMs). HF6-FC exerts its inhibitory effects by suppression of p38 and NF-${\kappa}B$ but activation of ERK. In addition, HF6-FC significantly decreased the expression of NFATc1 and c-Fos, the master regulator of osteoclast differentiation. The data indicate that components of HF6-FC may have therapeutic effects on bone-destructive processes such as osteoporosis, rheumatoid arthritis, and periodontal bone resorption.

Inhibitory Effects of Water Extracts of Eucommiae Cortex and Psoraleae Semen Alone and in Combination on Osteoclast Differentiation and Bone

  • Park, Jin Soo;Park, Ga Young;Choi, Han Gyul;Kim, Seong Joung;Kim, June Hyun;park, Min Cheol;Kim, Yun Kyung;Han, Sang Yong;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.34 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Objectives : The purpose of this study was to evaluate the effects of water extracts of Eucommiae cortex (EC), Psoraleae semen (PS), and their combination on receptor activator of nuclear factor-kappa-B ligand (RANKL)-induced osteoclast differentiation. Methods : We assayed the protein expression levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-Fos, mitogen-activated protein kinases (MAPKs), and ${\beta}-actin$ in cell lysates using western blotting. Similarly, mRNA expression levels of NFATc1, c-Fos, tartrateresistant acid phosphate (TRAP), and glyceraldehyde-3-phosphate dehydrogenase, spermatogeni (GAPDHS) from bone marrow macrophages (BMMs) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, we determined the anti-osteoporotic effects of the water extracts of EC, PS, and their combination in a lipopolysaccharide (LPS)-induced bone-loss mouse model. Results : The in vitro data revealed showed that the combination of EC and PS extract showed a more remarkable inhibition of osteoclast differentiation than each herb did alone. The combination downregulated the induction of c-Fos, NFATc1, and TRAP by suppressing the phosphorylation of p38 and c-Jun N-terminal kinases (JNKs) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). Lastly, the in vivo data showed that PS reduced the LPS-induced bone erosion. Conclusion : The result of this study suggests that EC and PS could be potential therapeutic agents for bone loss diseases such as osteoporosis.