• Title/Summary/Keyword: Osteoblast response

Search Result 81, Processing Time 0.024 seconds

Cell response to a newly developed Ti-10Ta-10Nb alloy and its sputtered nanoscale coating

  • Kim, Young-Min;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.56-61
    • /
    • 2009
  • STATEMENT OF PROBLEM. The success of titanium implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. PURPOSE. The purpose of this study was to evaluate the osteoblast precursor response to titanium-10 tantalum-10 niobium(Ti-Ta-Nb) alloy and its sputtered coating. MATERIAL AND METHODS. Ti-Ta-Nb coatings were sputtered onto the Ti-Ta-Nb disks. Ti6-Al-4V alloy disks were used as controls. An osteoblast precursor cell line, were used to evaluate the cell responses to the 3 groups. Cell attachment was measured using coulter counter and the cell morphology during attachment period was observed using fluorescent microscopy. Cell culture was performed at 4, 8, 12 and 16 days. RESULTS. The sputtered Ti-Ta-Nb coatings consisted of dense nanoscale grains in the range of 30 to 100 nm with alpha-Ti crystal structure. The Ti-Ta-Nb disks and its sputtered nanoscale coatings exhibited greater hydrophilicity and rougher surfaces compared to the Ti-6Al-4V disks. The sputtered nanoscale Ti-Ta-Nb coatings exhibited significantly greater cell attachment compared to Ti-6Al-4V and Ti-Ta-Nb disks. Nanoscale Ti-Ta-Nb coatings exhibited significantly greater ALP specific activity and total protein production compared to the other 2 groups CONCLUSIONS. It was concluded that nanoscale Ti-Ta-Nb coatings enhance cell adhesion. In addition, Ti-Ta-Nb alloy and its nanoscale coatings enhanced osteoblast differentiation, but did not support osteoblast precursor proliferation compared to Ti-6Al-4V. These results indicate that the new developed Ti-Ta-Nb alloy and its nanoscale Ti-Ta-Nb coatings may be useful as an implant material.

Dikkopf-1 promotes matrix mineralization of osteoblasts by regulating Ca+-CAMK2A- CREB1 pathway

  • Hyosun, Park;Sungsin, Jo;Mi-Ae, Jang;Sung Hoon, Choi;Tae-Hwan, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.627-632
    • /
    • 2022
  • Dickkopf-1 (DKK1) is a secreted protein that acts as an antagonist of the canonical WNT/β-catenin pathway, which regulates osteoblast differentiation. However, the role of DKK1 on osteoblast differentiation has not yet been fully clarified. Here, we investigate the functional role of DKK1 on osteoblast differentiation. Primary osteoprogenitor cells were isolated from human spinal bone tissues. To examine the role of DKK1 in osteoblast differentiation, we manipulated the expression of DKK1, and the cells were differentiated into mature osteoblasts. DKK1 overexpression in osteoprogenitor cells promoted matrix mineralization of osteoblast differentiation but did not promote matrix maturation. DKK1 increased Ca+ influx and activation of the Ca+/calmodulin-dependent protein kinase II Alpha (CAMK2A)-cAMP response element-binding protein 1 (CREB1) and increased translocation of p-CREB1 into the nucleus. In contrast, stable DKK1 knockdown in human osteosarcoma cell line SaOS2 exhibited reduced nuclear translocation of p-CREB1 and matrix mineralization. Overall, we suggest that manipulating DKK1 regulates the matrix mineralization of osteoblasts by Ca+-CAMK2A-CREB1, and DKK1 is a crucial gene for bone mineralization of osteoblasts.

Tunicamycin negatively regulates BMP2-induced osteoblast differentiation through CREBH expression in MC3T3E1 cells

  • Jang, Won-Gu;Kim, Eun-Jung;Koh, Jeong-Tae
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.735-740
    • /
    • 2011
  • Tunicamycin, an endoplasmic reticulum (ER) stress inducer, specifically inhibits N-glycosylation. The cyclic AMP (cAMP) response element-binding protein H (CREBH) was previously shown to be regulated by UPR-dependent proteolytic cleavage in the liver. On the other hand, the role of CREBH in other tissues is unknown. In the present study, tunicamycin increased the level of CREBH activation (cleavage) as well as mRNA expression in osteoblast cells. Adenoviral (Ad) overexpression of CREBH suppressed BMP2-induced expression of alkaline phosphatase (ALP) and osteocalcin (OC). Interestingly, the BMP2-induced OASIS (structurally similar to CREBH, a positive regulator of osteoblast differentiation) expression was also inhibited by CREBH overexpression. In addition, inhibition of CREBH expression using siRNA reversed the tunicamycin-suppressed ALP and OC expression. These results suggest that CREBH inhibited osteoblast differentiation via suppressing BMP2-induced ALP, OC and OASIS expression in mouse calvarial derived osteoblasts.

Effect of [6]-Gingerol, a Pungent Ingredient of Ginger, on Osteoblast Response to Extracellular Reducing Sugar

  • Kim, Young-Ho;Nguyen, Huu Thng;Ding, Yan;Park, Sang-Heock;Choi, Eun-Mi
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.807-811
    • /
    • 2007
  • Diabetes is marked by high glucose levels and is associated with decreased bone mass and increased fracture rates. To determine if [6]-gingerol could influence osteoblast dysfunction induced by 2-deoxy-D-ribose (dRib), osteoblastic MC3T3-E1 cells was treated with dRib and [6]-gingerol and markers of osteoblast function and oxidized protein were examined. [6]-Gingerol ($10^{-7}\;M$) significantly increased the growth of MC3T3-E1 cells in the presence of 30 mM dRib (p<0.05). [6]-Gingerol ($10^{-7}\;M$) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and osteocalcin secretion in the cells. We then examined the effect of [6]-gingerol on the production of osteoprotegerin and protein carbonyl in osteoblasts. Treatment with [6]-gingerol ($10^{-9}$ and $10^{-7}\;M$) increased osteoprotegerin secretion in osteoblastic cells. Moreover, [6]-gingerol ($10^{-9}$ and $10^{-7}\;M$) decreased protein carbonyl contents of osteoblastic MC3T3-E1 cells in the presence of 30 mM dRib. Taken together, these results demonstrate that [6]-gingerol inhibits dRib-induced damage and may be useful in the treatment of diabetes related bone diseases.

THE EFFECTS OF VANADIUM OXIDE & SODIUM ORTHOVANADATE ON MURIN OSTEOBLAST-LIKE (MC3T3-E1) CELLS (Vanadium 화합물이 조골세포주 MC3T3-El에 미치는 영향에 관한 연구)

  • Kwon, Ki-Youl;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.17-35
    • /
    • 1994
  • Vanadium is an essential trace element but has not been identified with a specific biogical role. To study the direct effects of vanadium on osteoblast, we incubated murin osteoblast-like (MC3T3-El) cells with various corcentration of vanadium oxide & sodium orthovanadate. This study was designed to investigate the effect of vanadium on DNA synthesis, alkaline phosphatase (ALP) activity, cAMP formation responsive to parathormone(PTH) and type I $\alpha$ 2 collagen ribonucleic acid (mRNA) level in murin osteoblast-like (MC3T3-El) cells. The cells were cultured in $\alpha-minimal$ essential medium$(\alpha-MEM)$ supplemented with $10\%$ fetal bovine serum (FBS) and then changed to $0.1\%$ FBS with various concenoation of vanadium oxide & sodium orthovanadate. Quiescent cultured MC3T3-El cells incubated for 24 hours with 2,5,10,15,20 ${\mu}M$ vanadium oxide incorporated $[^3H]Thymidine;$ every concentration showed increases in $[^3H]Thymidine$ incorporations dose dependant manner, the greatest response occurred at $20{\mu}M$. Quiescent cultured MC3T3-E1 cells incubated for 3days with 2,5,10,15,20 ${\mu}M$ vanadium oxide, for 2days with sodium orthovanadate and alkaline phosphatase was assayed with disodium phenyl phosphate as substrate. Vanadium oxide increased the alkaline phosphatase content in MC3T3-El cells at $2{\mu}M\;&\;6{\mu}M$ ; the greatest response occurred at $2{\mu}M$. But decreased at other content sodium orthovanadate increased alkaline phosphatase content in MC3T3-El cells at all concenoation ; the greatest response occurred at $4{\mu}M$. Quiescent cultured MC3T3-El cells incubated for 3days with $5,10{\mu}M$ vanadium oxide , with $5,8{\mu}M$ sodium orthovanadate and cAMP formation was measured by Radioimmunoassay(RIA). Vanadium oxide & sodium orthovanadate showed the tendency of inhibitory effects on cAMP responsiveness to PTH in MC3T3-El cells. Quiescent cultured MC3T3-El cells incubated for 24hours with $10,20{\mu}M$ vanadium oxide, with $5,10{\mu}M$ sodium orthovanadate and Type I $\alpha$ 2 collagen ribonucleic acid (mRNA) expression was studied by Nothern blot analysis. Northern blot analysis of vanadium oxide treated cells showed decreasing effects 0& sodium orthovanadate revealed increasing effects in type I $\alpha$ 2 collagen ribonucleic acid (mRNA) level.

  • PDF

The effect of implant surface treated by anodizing on proliferation of the rat osteoblast (양극화 타이타늄 표면처리가 골모세포 증식에 미치는 영향)

  • Hur, Yin-Shik;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Kim, Hyung-Sun;Cho, Byung-Won;Cho, Won-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.499-518
    • /
    • 2003
  • The surface characteristics of titanium have been shown to have an important role in contact ossseointegration around the implant. Anodizing at high voltage produces microporous structure and increases thickness of surface titanium dioxide layer. The aim of present study was to analyse the response of rat calvarial osteoblast cell to commercially pure titanium and Ti-6A1-4V anodized in 0.06 mol/l ${\beta}$-glycerophosphate and 0.03 mol/l sodium acetate. In this study, rat calvarial osteoblasts were used to assay for cell viability and cell proliferation on the implant surface at 1,2,4,7 days. 1. Surface roughness was 1.256${\mu}m$ at 200V, and 1.745${\mu}m$ at 300V. 2. The thickness of titanium oxide layer was increased 1 ${\mu}m$ with the increase of 50V. 3. The proliferation rate of osteoblastic cells was increased with the increase of the surface roughness and the thickness of titanium oxide layer. 4. There was no difference in cell viability and cell proliferation between commercially pure titanium and Ti-6A1-4V anodized at the same condition. In conclusion, the titanium surface modified by anodizing was biocompatible, produced enhanced osteoblastic response. The reasons of enhanced osteoblast response might be due to reduced metal ion release by thickened and stabilized titanium dioxide layer and microporous rough structures.

N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway

  • Lee, Daewoo;Kook, Sung-Ho;Ji, Hyeok;Lee, Seung-Ah;Choi, Ki-Choon;Lee, Kyung-Yeol;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.636-641
    • /
    • 2015
  • There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H2O2), N-acetyl cysteine (NAC), or both. Exposing the cells to H2O2 decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H2O2 treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H2O2 on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H2O2 to near normal levels in the cells. Collectively, our findings suggest that H2O2-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC.

The Effect of Cyclosporin A on Osteoblast in vitro (Cyclosporin A가 in vitro에서 조골세포에 미치는 영향)

  • Kim, Jae-Woo;Lee, Hyun-Jung;Kang, Jung-Hwa;Ohk, Seung-Ho;Choi, Bong-Kyu;Yoo, Yun-Jung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.747-757
    • /
    • 2000
  • Cyclosporin A(CsA) is an immunosuppressive agent widely used for preventing graft rejecting response in organ transplantation. The basic properties of CsA to osteoblast has not been well known yet. A better understanding of the mechanisms of CsA function on bone could provide valuable information regarding basic properties of bone remodeling, pharmacotherapeutic intervention in metabolic bone disease, and the consequences of immunosuppression in bone physiology. The purpose of this study was to investigate the effect of CsA on osteoblast by evaluating parameters of proliferation, collagen synthetic activity, alkaline phosphatase activity, and ALP mRNA expression in mouse calvarial cell. 1. CsA ($3{\mu}g/m{\ell}$) treated mouse calvarial cell showed statistically significant increase in cell proliferation.(P<0.05) 2. CsA($1,\; 3{\mu}g/m{\ell}$) treated MC3T3 cell line showed statistically significant increase in cell proliferation. 3. The amount of collagen of CsA($3{\mu}g/m{\ell}$) treated mouse calvarial cell was decreased statistically significantly. 4. Alkaline phosphatase activity was increased statistically significantly in CsA treated group($1{\mu}g/m{\ell}$). 5. mRNA expression of ALP was increased in CsA treated group These results suggest that CsA could affect bone remodeling by modulating proliferation & differentiation of osteoblast.

  • PDF

The Effects of Dexamethasone on Growth and Differentiation of Osteoblast-like Cell (덱사메타존이 골아유사세포의 성장과 분화에 미치는 영향)

  • Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.277-289
    • /
    • 1999
  • The ultimate aim of periodontal treatment is periodontal regeneration, which necessiates the regeneration of bone tissues. To evaluate the effects of Dex growth and differentiation of MC3T3-E1 cells, cells were seeded in alpha-modified eagle medium containing 10% fetal bovine serum, 10mM beta-glycerophosphate , $50{\mu}g/ml$ of ascorbic acid, with or without $10^{-7}M$ Dex and examined cell proliferation activities, alkaline phosphatase activities, and bone nodule formation until 25days. The results were as follows : 1. In Dex group, cell proliferation activities were lower until 15 days compared to control group. Bone nodules formation were showed at 10 days. 2. In the time-response effect, ALP activities were increased until the 10 days in control groups thereafter decreased and ALP activities of Dex group were lower aspect than control group until the 10 days In this study, bone nodule formation of osteoblast-like cells were accelerated by Dex and cell proliferation activities, ALP activity of Dex group showed lower than control group. Dex was considered that it did suppress initial growth, but accerelate mineralization of osteoblast-like cells.

  • PDF

Osteoblast adhesion and differentiation on magnesium titanate surface (마그네슘 티타네이트 표면의 조골세포 부착도와 분화)

  • Choi, Seung-Min;Lee, Jae-Kwan;Ko, Sung-Hee;Um, Heung-Sik;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.851-861
    • /
    • 2005
  • The nature of the implant surface can directly influence cellular response, ultimately affecting the rate and quality of new bone tissue formation. The aim of this in vitro study was to investigate if human osteoblast-like cells, Saos-2, would respond differently when plated on disks of magnesium titanate and machined titanium. Magnesium titanate disks were prepared using Micro Arc Oxidation(MAO) methods. Control samples were machined commercially pure titanium disks. The cell adhesion, proliferation and differentiation were evaluated by measuring cell number, and alkaline phosphatase(ALPase) activity at 1 day and 6 day after plating on the titanium disks. Measurement of cell number and ALPase activity in Saos-2 cells at 1 day did not demonstrate any difference between machined titanium and magnesium titanate. When compared to machined titanium disks, the number of cells was reduced on the magnesium titanate disks at 6 day, while ALPase activity was more pronounced on the magnesium titanate. Enhanced differentiation of cells grown on magnesium titanate samples was indicated by decreased cell proliferation and increased ALPase activity.