Osteoblast adhesion and differentiation on magnesium titanate surface

마그네슘 티타네이트 표면의 조골세포 부착도와 분화

  • Choi, Seung-Min (Department of Periodontics, College of Dentistry, Kangnung National University) ;
  • Lee, Jae-Kwan (Department of Periodontics, College of Dentistry, Kangnung National University) ;
  • Ko, Sung-Hee (Department of Phamacology, College of Dentistry, Kangnung National University) ;
  • Um, Heung-Sik (Department of Periodontics, College of Dentistry, Kangnung National University) ;
  • Chang, Beom-Seok (Department of Periodontics, College of Dentistry, Kangnung National University)
  • 최승민 (강릉대학교 치과대학 치주과학교실) ;
  • 이재관 (강릉대학교 치과대학 치주과학교실) ;
  • 고성희 (강릉대학교 치과대학 약리학교실) ;
  • 엄흥식 (강릉대학교 치과대학 치주과학교실) ;
  • 장범석 (강릉대학교 치과대학 치주과학교실)
  • Published : 2005.12.31

Abstract

The nature of the implant surface can directly influence cellular response, ultimately affecting the rate and quality of new bone tissue formation. The aim of this in vitro study was to investigate if human osteoblast-like cells, Saos-2, would respond differently when plated on disks of magnesium titanate and machined titanium. Magnesium titanate disks were prepared using Micro Arc Oxidation(MAO) methods. Control samples were machined commercially pure titanium disks. The cell adhesion, proliferation and differentiation were evaluated by measuring cell number, and alkaline phosphatase(ALPase) activity at 1 day and 6 day after plating on the titanium disks. Measurement of cell number and ALPase activity in Saos-2 cells at 1 day did not demonstrate any difference between machined titanium and magnesium titanate. When compared to machined titanium disks, the number of cells was reduced on the magnesium titanate disks at 6 day, while ALPase activity was more pronounced on the magnesium titanate. Enhanced differentiation of cells grown on magnesium titanate samples was indicated by decreased cell proliferation and increased ALPase activity.

Keywords

References

  1. Branemark PI. Hansson BO, Adell R, Breine U, Lindström U, Hallen O, Oman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 1977; 16 (Suppl. 1):7-127
  2. Kasemo B, Lausmaa J. Aspect of surface physics on titanium implants. Swed Dent J 1983; 28 (Suppl.) : 19-36
  3. Lausmaa J, Kasemo B, Surface spectroscopic characterization of titanium implant materials. Appl Surf Sci 1990;45: 133-46
  4. Olefjord I, Hansson S. Surface analysis of four dental implant systems. Int J Oral Maxillofac Impl 1993;8:32-40
  5. Zittel' H, Plenk HJ. The electrochemical behaviour of metallic implant materials as indicator of their biocompatibility. J Biomed Mater Res 1987:21:881-96 https://doi.org/10.1002/jbm.820210705
  6. Williams DF. Corrosion of implant materials. Ann Rev Mater Sci 1976:6: 237-65 https://doi.org/10.1146/annurev.ms.06.080176.001321
  7. Solar RJ, Pollack SR, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants. J Biomed Mater Res 1979:13:217-50 https://doi.org/10.1002/jbm.820130206
  8. Tengvall P, Lundström I. Physicochemical considerations of titanium as a biomaterial. Clin Mater 1992:9: 115-34 https://doi.org/10.1016/0267-6605(92)90056-Y
  9. Johansson CB. On tissue reactions to metal implants. Thesis, University of Göteborg, Sweden, 1991
  10. L J, Hastings GW. Oxide ceramics: inert ceramic materials in medicine and dentistry. In: Black J, Hastings G. editors. Handbook of biomaterial properties. London: Chapman & Hall: 1998. p. 340-354
  11. Deportet D. Watson P, Pharoah M, Levy D, Todescan R. Five to six-year results of a prospective clinical trial using the ENDOPORE dental implant and a mandibular overdenture. Clin Oral Implants Res 1999:10:95-102 https://doi.org/10.1034/j.1600-0501.1999.100203.x
  12. Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK. Hirt HP, Snetivy D, Nolte LP. Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 1999:45: 75-83 https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<75::AID-JBM1>3.0.CO;2-P
  13. Palmer RM, Palmer PJ, Smith BJ. A 5-year prospective study of astra single tooth implants. Clin Oral Implants Res 2000;11:179-182 https://doi.org/10.1111/j.1600-0501.2000.tb00012.x
  14. Testori T. Wiseman L. Woolfe S. Porter SS. A prospective multicenter clinical study of the osseotite implant: four-year interim report. Int J Oral Maxillofac Implants 2001; 16: 193-200
  15. Bowers. K.T.. Keller, J.C. Randolph, B.A., Wick. D.G., Michaels, C.M. Optimization of surface micromorphology for enhanced psteoblast response in vitro. Int J Oral Maxillofac Implants 1992; 7(3) :302-310
  16. Kieswetter, K. Schwartz, Z. Dean, D.D., Boyan. B.D. : The role of implant surface characteristics in the healing of bone. Cret. Rev. oral Biol. Med. 1996;7(4): 329-345 https://doi.org/10.1177/10454411960070040301
  17. Lohmann, C.H., Sagun, R. Jr.. Sylvia, V.L., Cochran, D.L., Dean. D.D.. Boyan B.D., Schwartz. Z. Surface roughness modulates the response of MG63 osteoblast-like cells to 1.25-(OH) (2)D(3) through regulation of phospholipase A (2) activity and activation of protein kinase A. J. Biomed. Mater. Res., 1999; 47 (2) : 139-151 https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<139::AID-JBM4>3.0.CO;2-2
  18. Ericsson, I., Johansson. C.B .. Bystedt, H., Norton. M.R. A histomorphometric evaluation of bone-to-implant contact on machine prepared and roughened titanium dental implants. A pilot study in the dog. Clin. Oral Implants Res. 1994; 5(4): 202-206 https://doi.org/10.1034/j.1600-0501.1994.050402.x
  19. Larsson. C., Thomsen. P., Lausmaa, J.. Rodahl. M., Kasemo. B.. Ericson. L.E Bone response to surface modified titanium implants : studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 1994: 15(3): 1062-1074 https://doi.org/10.1016/0142-9612(94)90092-2
  20. Wennerberg, A.. Ektessabi. A.. Albrektsson. T.. Johansson. C.. Andersson. B. A 1-year follow up of implants of differing surface roughness placed in rabbit bone. Int. J. Oral Maxillofac. Implants 1997:12(4):486-494
  21. Jansen JA. Wolke JG, Swann S. Van der Waerden JP. Application of magnetron sputtering for producing ceramic coatings on implant materials. Clin Oral Implants Res 1993:4:28-34 https://doi.org/10.1034/j.1600-0501.1993.040104.x
  22. Ishizawa H. Ogino M. Formation and characterization of anodic titanium oxide films. J Biomed Mater Res 1995: 29:65-72 https://doi.org/10.1002/jbm.820290110
  23. Ektessabi AM. Ion beam processing of bio-ceramics. Nucl Instrum Methods Phys Res B 1995:99:610-3 https://doi.org/10.1016/0168-583X(94)00568-0
  24. Campbell PA. Gledhill HC, Brown SR, Turner IG. Vacuum plasma sprayed hydroxyapatite coatings on titanium alloy substrates: surface characterization and observation of dissolution processes using atomic force microscopy. J Vac Sci Technol B 1996: 14: 1167-72 https://doi.org/10.1116/1.588422
  25. Haddow DB, James PF. Van Noort R. Sol. gel derived calcium phosphate coatings for biomedical applications. J Sol. Gel Sci Technol 1998: 13: 261-265 https://doi.org/10.1023/A:1008699421635
  26. Burgess AV. Story BJ, La D. Wagner WR, LeGeros JP. Highly crystalline Mp-1(TM) hydroxylapatite coating Part I: in vitro characterization and comparison to other plasma-sprayed hydroxylapatite coatings. Clin Oral Implants Res 1999: 10:245-56 https://doi.org/10.1034/j.1600-0501.1999.100401.x
  27. Lo WJ, Grant DM. Ball MD, Welsh BS, Howdle SM. Antonov EN, Bagratashvili VN, Popov VK. Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy. J Biomed Mater Res 2000:50: 536-45 https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<536::AID-JBM9>3.0.CO;2-U
  28. Hench LL, Kokubo T. Properties of bioactive glasses and glassceramics. Handbook of biomaterial properties. In: Black J, Hastings G, editors. Handbook of biomaterial properties. London: Chapman & Hall: 1998. p. 355-63
  29. Gottlander M. On hard tissue reactions to hydroxyapatite-coated titanium implants. Ph.D. thesis, Department of Biomaterials/Handicap Research, University of G. oteborg, Sweden, 1994
  30. Albrektsson T. Hydroxyapatite-coated implants: a case against their use. J Oral Maxillofac Surg 1998: 56: 1312-26 https://doi.org/10.1016/S0278-2391(98)90616-4
  31. Ong JL, Chan DCN. Hydroxyapatite and their use as coatings in dental Implants: a review. Crit Rev Biomed Eng 2000: 28: 667-707
  32. Ishizawa H, Fujino M. Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide .lms containing Ca and P. J Biomed Mater Res 1995: 29: 1459-68 https://doi.org/10.1002/jbm.820291118
  33. Larsson C, Emanuelsson L, Thomsen P, Ericson L, Aronsson B, Rodahl M. Kasemo B, Lausmaa J. Bone response to surfacemodi .ed titanium implants: studies on the tissue response after one year to machined and electropolished implants with different oxide thicknesses. J Mater Sci Mater Med 1997: 8:721-729 https://doi.org/10.1023/A:1018548225899
  34. Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, Murakami K, Asaoka K, Early bone formation around calcium-ion-implanted titanium inserted into rat tibiae. J Biomed Mater Res 1997: 36: 131-6 https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<131::AID-JBM16>3.0.CO;2-L
  35. Ichikawa T, Hanawa T, Ukai H, Murakami K, Three-dimensional bone response to commercially pure titanium, hydroxyapatite, and calcium-ion-mixing titanium in rabbits. Int J Oral Maxillofac Implants 2000: 15:231-8
  36. Yan WQ, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T. Bonding of chemically treated titanium implants to bone. J Biomed Mater Res 1997: 37:267-75 https://doi.org/10.1002/(SICI)1097-4636(199711)37:2<267::AID-JBM17>3.0.CO;2-B
  37. Skripitz R, Aspenberg P. Tensile bond between bone and titanium. Acta Orthop Scand 1998:69:2-6 https://doi.org/10.1080/17453674.1998.11744785
  38. Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Aldini N, Torricelli P, Vicentini B. In vitro and vivo behaviour of Ca and P-enriched anodized titanium. Biomaterials 1999:20 : 1587-94 https://doi.org/10.1016/S0142-9612(99)00060-5
  39. Nishiguchi S, Nakamura T, Kobayashi M, Kim HY, Miyaji F, Kokubo T. The effect of heat treatment on bone- bonding ability of alkali-treated titanium. Biomaterials 1999:20:491-500 https://doi.org/10.1016/S0142-9612(98)90203-4
  40. Henry P, Tan AE, Allan BP. Removal torque comparison of TiUnite and turned implants in the Greyhound dog mandible. Appl Osseointegration Res 2000; 1: 15-17
  41. Albrektsson T, Johansson C, Lundgren AK, Sul YT, Gottlow J. Experimental studies on oxidized implants, A histomorphometrical and biomechanical analysis. Appl Osseointegration Res 2000; 1 :21-24
  42. Sul YT, Johansson CB, Jeong Y. Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 2001: 23: 329-46 https://doi.org/10.1016/S1350-4533(01)00050-9
  43. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium Implants up to dielectric breakdown: the oxide thickness, micropore con.gurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002; 23: 491-501 https://doi.org/10.1016/S0142-9612(01)00131-4
  44. Sul YT, Johansson CB, Jeong Y. Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxide. Clin Oral Implants Res 2002; 13:252-259 https://doi.org/10.1034/j.1600-0501.2002.130304.x
  45. Sul YT, Johansson CB, Roser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodized implants. Biomaterials 2002:23:1809-19 https://doi.org/10.1016/S0142-9612(01)00307-6
  46. Sul YT, Johansson CB, Jeong Y, Roser K, Wennerberg A, Albrektsson T. Oxidised implants and their influence on the bone response. J Mater Sci Mater Med 2001; 12: 1025-1031 https://doi.org/10.1023/A:1012837905910
  47. Sul YT. Johansson CB, Kang YM, Jeon DG, Albrektsson T. Bone reactions to oxidized titanium implants with electrochemically anion S and P incorporation. Clin Implant Dent Relat Res 2002: 4:478-87
  48. Sul YT. Johansson CB, Albrektsson T. Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implants 2002; 17: 625-634
  49. Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003:24:3893-3907 https://doi.org/10.1016/S0142-9612(03)00261-8
  50. Kwon, S.Y., Takei, H., Pioletti. D.P., Lin, T., Ma, Q.J., Akeson, W.H. Wood, D.J., Sung, K.L. Titanium particles inhibit osteoblast adhesion to fibronectin-coated substrates. J. Orthop. Res. 2000: 18(2) :203-211 https://doi.org/10.1002/jor.1100180207
  51. Gailit J and Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem 1988;263: 12927-12932
  52. Mould AP, Akiyama SK. and Humphries MJ. Regulation of integrin alpha 5 beta 1-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for $Mn^{2+}$, $Mg^{2+}$, and $Ca^{2+}$. J Biol Chem 1995:270:26270-26277 https://doi.org/10.1074/jbc.270.44.26270
  53. Krause A, Cowles EA, Gronowicz G. Integrin-mediated signaling in osteoblasts on titanium implant materials. J Biomed Mater Res 2000:52: 738-747 https://doi.org/10.1002/1097-4636(20001215)52:4<738::AID-JBM19>3.0.CO;2-F
  54. Cooper LF, Masuda T, Yliheikkila PK. Felton DA. Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies. Int J Oral Maxillofac Implants 1998: 13: 163-74
  55. Davies JE. In vitro modeling of the bone /implant interface. Anat Rec 1996: 245: 426-45 https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<426::AID-AR21>3.0.CO;2-Q
  56. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 1990: 143:420-30 https://doi.org/10.1002/jcp.1041430304
  57. Ali SY. Mechanisms of calcification. In : Owen R. Goodfellow J. Bollough P, editors. Scientific foundation of orthopaedics and traumatology. London: Heinemann, 1984: 175-95
  58. Dean DD, Schwartz Z, Bonewald LF, Muniz OE. Morales SM, Gomez R. Brooks BP, Qiao M, Howell DS, Boyan BD. Matrix vesicles produced by osteoblast-like cells in culture become significantly enriched in proteoglycandegrading metallo-proteinases after addition of $\beta$-glycerophosphate and ascorbic acid. Calcif Tissue Int 1994:54: 399-408 https://doi.org/10.1007/BF00305527