• Title/Summary/Keyword: Oscillation Control

Search Result 498, Processing Time 0.026 seconds

Observation and Analysis of the Oscillation of 4-Bundled Conductor System (4도체 송전선로의 진동현상 조사.분석(I))

  • Sohn, H.K.;Lee, H.K.;Lee, D.I.;Chu, J.H.;Yu, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.368-370
    • /
    • 2001
  • The oscillation is very dangerous in bundled transmission lines. But we have no data for oscillation phenomena in real transmission lines. In order to develop the control method of the osculation, we need to know the amplitude and relations between winds and other conditions. So we observed and analyzed the oscillation in some 4 bundled lines, which have high failure rate. We try to suggest the oscillation phenomena of the 4 bundled lines. In the future we will try to observe and analyze the oscillation for developing protection methods of transmission lines from the oscillation.

  • PDF

Czochralski crystal growth by the accelerated crystal rotation technique (결정봉 회전 가속화 기법에 의한 초크랄스키 결정 성장)

  • 김승태;최정일;성형진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.18-28
    • /
    • 1998
  • A laboratory experiment was made of a control of temperature oscillation in Czochralski convection. Numerical computation was also made to delineate the control of temperature oscillation. The suppression of temperature oscillation was achieved by varying the rotation rate of crystal rod ($\Omega=\Omega_0(1+A sin 2{\pi}ft/t_p)$), where A denotes the amplitude of rotation rate and f the frequency factor. Based on the inherent dimesionless time period of temperature oscillation ($t_p$), the suppression rate of temperature oscillation was characterized by the mixed convection parameter ($0.217{\leq}Ra/PrRe^2{\leq}1.658$). The optimal values of A and f were also scrutinized. To understand the suppression mechanism of temperature oscillation, the controls of isotherm($\theta$) and equi-vorticity($\omega$) were investigated.

  • PDF

Damping Oscillation of Power System by Robust Control of SSSC (강인 제어에 의한 Static Synchronous Series Compensator의 전력계통 동요 억제)

  • Kim, Hak-Man;Oh, Tae-Kyoo;Kook, Kyung-Soo;Jeon, Jin-Hong;Jang, Byung-Hoon;Chu, Jin-Bu
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1035-1038
    • /
    • 1999
  • To improve the damping of all poorly damped oscillation modes, a control strategy of Static Synchronous Series Compensator (SSSC) based on energy method is presented in this Paper As a synchronous voltage-sourced inverter, SSSC is used to provide controllable series compensation. SSSC can provide controllable compensating voltage over an identical capacitive and inductive range. The damping effect of control strategy based on energy function is robustness with respect to loading condition, fault location and network configuration. Furthermore, the control inputs are based on local signals. In two area system, the effect of damping inter-area mode oscillation is demonstrated by the robust control strategy of SSSC.

  • PDF

OSCILLATION AND ATTRACTIVITY OF DISCRETE NONLINEAR DELAY POPULATION MODEL

  • Saker, S.H.
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.363-374
    • /
    • 2007
  • In this paper, we consider the discrete nonlinear delay model which describe the control of a single population of cells. We establish a sufficient condition for oscillation of all positive solutions about the positive equilibrium point and give a sufficient condition for the global attractivity of the equilibrium point. The oscillation condition guarantees the prevalence of the population about the positive steady sate and the global attractivity condition guarantees the nonexistence of dynamical diseases on the population.

Modeling and Control of Gantry Crane with Arm Type of Oscillation Stopper

  • Park, Soung-Jea;Kim, Kwang-Zu;Kim, Sang-Bong;Nguyen, Tan-Tien;Shin, Min-Seng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.166.4-166
    • /
    • 2001
  • The oscillation of a crane system is divided into the oscillation of container in respect of its trolley and the oscillation of trolley in relation to the whole crane system. We introduce a new type of crane system that avoids to the irreducible sway of crane system caused by hanging cables. The cables suspending the spreader are replaced by using an "anti-sway system". The proposed system is composed of mechanical arms with function of anti-sway based on conventional line system. The effectiveness of the proposed new type crane system and the controller is shown through the simulation results.

  • PDF

Symptoms of Self-excited Combustion Oscillation and their Detection

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi;Bae, Suk-Tae;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1859-1868
    • /
    • 2004
  • Monitoring of OH chemiluminescence through an optical fiber was demonstrated to be a useful method in detecting self-excited combustion oscillations. OH chemiluminescence intensity detected by the optical fiber showed mostly excellent agreement with those obtained by high speed CCD camera measurements when combustion oscillations were strong. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure. For the purpose, we have found and proposed unique measures to tell the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals.

Research of the Mechanism of Low Frequency Oscillation Based on Dynamic Damping Effect

  • Liu, Wenying;Ge, Rundong;Zhu, Dandan;Wang, Weizhou;Zheng, Wei;Liu, Fuchao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1518-1526
    • /
    • 2015
  • For now, there are some low frequency oscillations in the power system which feature low frequency oscillation with positive damping and cannot be explained by traditional low frequency oscillation mechanisms. Concerning this issue, the dynamic damping effect is put forward on the basis of the power-angle curve and the study of damping torque in this article. That is, in the process of oscillation, damping will dynamically change and will be less than that of the stable operating point especially when the angle of the stable operating point and the oscillation amplitude are large. In a situation with weak damping, the damping may turn negative when the oscillation amplitude increases to a certain extent, which may result in an amplitude-increasing oscillation. Finally, the simulation of the two-machine two-area system verifies the arguments in this paper which may provide new ideas for the analysis and control of some unclear low frequency phenomena.

Development of Motion Control Camera Design Based on Wires with Anti-sway Method

  • Kim, Tae-Rim;Jung, Sung-Young;Baek, Gyeong-Dong;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This paper is proposed about three axis motion control camera design method based on wires. Original motion control camera consists of track, boom, L-Head, Camera and so on and is enormous and expensive. But proposed motion control camera adjusts wire length using encoders and motors. And position control use position based straight line of straight-line move method for moving precise position. Proposed simple design is able to use various place and inexpensive than original motion control camera. But, camera was vibrated and rotated due to basic property of wire. So we proposed solutions that connected method of wire and using a tensional object for reducing rotation. For proposed algorithm verification, we realized three axis motion control camera based on wire and measured oscillation while moving same trace. We confirmed the results that standard deviation of oscillation was reduced 4.93 degree than before design method.

The prediction of self-excited oscillation of a fuzzy control system based on the describing function dynamic case (묘사함수를 이용한 퍼지 제어시스템의 자기진동 현상의 예측-동적 경우)

  • Kim, Eun-Tai;Noh, Heung-Sik;Kwon, Chul;Kim, Dong-Yon;Park, Mig-Non
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.5
    • /
    • pp.41-49
    • /
    • 1998
  • This paper deals with the self-excited oscillation of a system that is controlled by a dynamic nonlinear fuzzy controller. The self-excited oscillation can be observed in the systems composed of nonlinear elements and its analysis is as important as that of stability in the design of nonlinear systems. by using the frequency transfer function analysis known as the describing function method in nonlinear control theory, the oscillation is theoretically predicted. First, the describing function of a dynamic fuzzy controller is derived and then, based on the derived describing fuction, self-excited oscillation of the system controlled by a dynamic fuzzy controller is predicted. To obtain the describing function of the dynamic fuzzy controller, a simple structure is assumed for the fuzzy controller.

  • PDF