• Title/Summary/Keyword: Orientation Matrix

Search Result 255, Processing Time 0.018 seconds

The Role of Inorganic Compounds Additions on the Matrix Microtexture Control of C/C Composite (무기화합물 첨가에 의한 C/C복합재료의 매트릭스 조직제어)

  • ;安田榮
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1151-1158
    • /
    • 1997
  • Fracture of uni-directional carbon fiber reinforced carbon matrix composite is strongly dependent on the orientation of basal plane in graphite matrix when it is limited within matrix. The orientation of basal planes are vertically stacked to carbon fiber which results in the weakness for applied tensile or shear force in thermosetting resin derived-carbon matrix composite. Microtextural control of the matrix was tried through chemical interaction between metal carbides and furan resin derived-carbon matrix. SiC and TiO2 addition made the orientation disordered. However, porosity increased due to decomposition of SiC. Interfacial bonding could be controlled by TiO2 addition, but carbon fiber was considerably reacted with TiC during thermal treatment higher than 2$600^{\circ}C$. Therefore, it is desirable to control the thermal treatment temperature at which decomposition of SiC was not serious and TiC/C was not formed eutectoid.

  • PDF

INVARIANCE OF KNEADING MATRIX UNDER CONJUGACY

  • Gopalakrishna, Chaitanya;Veerapazham, Murugan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.265-281
    • /
    • 2021
  • In the kneading theory developed by Milnor and Thurston, it is proved that the kneading matrix and the kneading determinant associated with a continuous piecewise monotone map are invariant under orientation-preserving conjugacy. This paper considers the problem for orientation-reversing conjugacy and proves that the former is not an invariant while the latter is. It also presents applications of the result towards the computational complexity of kneading matrices and the classification of maps up to topological conjugacy.

The Effect of Multi-walled Carbon Nanotubes on the Molecular Orientation of Poly(vinyl alcohol) in Drawn Composite Films

  • Wang, Xiao;Park, Soo-Young;Yoon, Kwan-Han;Lyoo, Won-Seok;Min, Byung-Gil
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.323-327
    • /
    • 2006
  • Poly(vinyl alcohol) (PVA)/multi-walled carbon nanotube (MWNT) composite films were prepared by casting a DMSO solution of PVA and MWNTs, whereby the MWNTs were dispersed by sonication. A significant improvement in the mechanical properties of the PVA drawn films was achieved by the addition of a small amount of MWNTs. The initial modulus and the tensile strength of the PVA drawn film increased by 30 % and 45 %, respectively, with the addition of 1 wt% MWNTs, which are close to those calculated from the rule of mixtures, and were strongly dependent upon the orientation of the PVA matrix. The mechanical properties, however, were not improved with a further increase in the MWNT content. The orientation of MWNTs in the composite was not well developed compared to that of the PVA matrix. This result suggests that the improvement of the molecular orientation of the PVA matrix plays a major role in the increase of the mechanical propeties of the drawn PVA/MWNT composite films.

HRTEM Study of Precipitation Behavior in Mg-6 wt%Zn-1 wt%Y Alloy (고분해능 전자현미경을 이용한 Mg-6 wt%Zn-1 wt%Y 합금의 석출거동에 관한 연구)

  • Baek, Sang-Yeol;Lee, Kap-Ho;Kim, Taek-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.362-366
    • /
    • 2008
  • The precipitation behavior in Mg-6 wt%Zn-1 wt%Y alloy annealed at different temperatures of $200^{\circ}C$ and $400^{\circ}C$ has been characterized by high resolution transmission electron microscope. When the alloy is annealed at $200^{\circ}C$ for 6 hr, the plate- and the rod-shaped ${\beta}_2'$ phases are precipitated in the matrix. The orientation relationship of plate-shaped precipitates with the matrix exhibits a [$11{\bar{2}}0]{\beta}_2$ || [$10{\bar{1}}0$]Mg, $(0001){\beta}_2'$ || (0001)Mg. While the rod-shaped precipitates have two kinds of the orientation relationships with the matrix, i.e. $[11{\bar{2}}0]{\beta}_2'$||[0001] Mg, $(0001){\beta}_2'||(11{\bar{2}}0)$ Mg and $[11{\bar{2}}0]{\beta}_2'$||[0001] Mg, $({\bar{1}}106){\beta}_2'||(10{\bar{1}}0)$ Mg. With increasing annealing time at $200^{\circ}C$ the ${\beta}_1'$ phases are also precipitated in the matrix and the orientation relationship exhibits a $[010]{\beta}_1'$ || [0001]Mg, $(603){\beta}_1'$ || ($01{\bar{1}}0$)Mg between the ${\beta}_1'$ precipitate and the matrix. The icosahedral phases are precipitated in the alloy annealed at $400^{\circ}C$ and exhibit a $[I2]_I$ || [0001]Mg relationship with the matrix.

Effect of the Extrusion Ratios on Fiber Breakage and Orientation in Hot Extrusion Process in Metal Matrix Composites (금속복합재료의 열간압출공정에 있어서 압출비가 섬유의 파단 및 배향에 미치는 영향)

  • Kang, C.G.;Kang, S.S.;Kim, B.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1740-1750
    • /
    • 1993
  • The aluminar short fiber reinforced composite materials for hot extrusion were fabricated by semi-solid stirring method, and extruded at extrusion temperature $400^{\circ}C$ with various extrusion ratio. The hot extrusion load of volume fraction 15% metal matrix composites and base alloy Al7075 has been compared. The fiber length distribution, fiber breakage and fiber orientation are investiged to know the fiber behaviour in before and after hot extrusion. The tensile strength of the hot extruded billet are experimentally determined for different of extrusion ratios, and compared with theorically calculated strength.

Microwave Dielectric Properties of Oriented BN / Polyvinyl Butyral Matrix Composites

  • Ahn, Hong Jun;Kim, Eung Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.32-36
    • /
    • 2014
  • The effects of an amphiphilic agent and the orientation of BN on the microwave dielectric properties of BN / polyvinyl butyral (PVB) composites were investigated as a function of the BN content in volume fractions from 0.1 to 0.5 ($V_f$). The plate-shaped BN samples were oriented in the PVB matrix by physical processes, in this case tape casting and laminate methods. With an increase in the BN content, the dielectric constant (K) increased because the K of BN was higher than that of the PVB. At the same BN content, composites with an in-plane orientation of the BN showed a higher dielectric constant than that of composites with a transverse orientation of the BN because the ceramics were oriented parallel to the electric field. All of the composites showed nearly constant K values ranging from 1 to 9.4 GHz, indicating good frequency stability over a wide frequency range. At the same frequency, the K values of the composites increased with an increase in the BN content.

A Sequential Orientation Kalman Filter for AHRS Limiting Effects of Magnetic Disturbance to Heading Estimation

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1675-1682
    • /
    • 2017
  • This paper deals with three dimensional orientation estimation algorithm for an attitude and heading reference system (AHRS) based on nine-axis inertial/magnetic sensor signals. In terms of the orientation estimation based on the use of a Kalman filter (KF), the quaternion is arguably the most popular orientation representation. However, one critical drawback in the quaternion representation is that undesirable magnetic disturbances affect not only yaw estimation but also roll and pitch estimations. In this paper, a sequential direction cosine matrix-based orientation KF for AHRS has been presented. The proposed algorithm uses two linear KFs, consisting of an attitude KF followed by a heading KF. In the latter, the direction of the local magnetic field vector is projected onto the heading axis of the inertial frame by considering the dip angle, which can be determined after the attitude KF. Owing to the sequential KF structure, the effects of even extreme magnetic disturbances are limited to the roll and pitch estimations, without any additional decoupling process. This overcomes an inherent issue in quaternion-based estimation algorithms. Validation test results show that the proposed method outperforms other comparison methods in terms of the yaw estimation accuracy during perturbations and in terms of the recovery speed.

Optimization Techniques of Die Disign on Hot Extrusion Process of Metal Matrix Composites (금속복합재료의 열간압출에 관한 금형설계의 최적화기법(I))

  • 강충길;김남환;김병민
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.346-356
    • /
    • 1997
  • The fiber orientation distribution and interface bonding in hot extrusion process have an effect on the maechanical properties of metal matrix composites(MMC's). Aluminium alloy matrix composites reinforced with alumina short fibers are fabricated by compocasting method. MMC's billets are extruded at high temperature through conical and curved shaped dies with various extrusion ratios and temperature. This present study was directed to describe the systematic correlation between extrusion die shape and subsequent results such as fiber breakage, fiber orientation and tensile strength to hot extruded MMC's billet. Extrusion load, tensile strength and hardness for variation of extrusion ratios and temperature are investigated to examine mechanical properties of extruded MMC's SEM fractographs of tensile specimens are observed to analyze the fracture mechanism.

  • PDF

A Parallel-Architecture Processor Design for the Fast Multiplication of Homogeneous Transformation Matrices (Homogeneous Transformation Matrix의 곱셈을 위한 병렬구조 프로세서의 설계)

  • Kwon Do-All;Chung Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.723-731
    • /
    • 2005
  • The $4{\times}4$ homogeneous transformation matrix is a compact representation of orientation and position of an object in robotics and computer graphics. A coordinate transformation is accomplished through the successive multiplications of homogeneous matrices, each of which represents the orientation and position of each corresponding link. Thus, for real time control applications in robotics or animation in computer graphics, the fast multiplication of homogeneous matrices is quite demanding. In this paper, a parallel-architecture vector processor is designed for this purpose. The processor has several key features. For the accuracy of computation for real application, the operands of the processors are floating point numbers based on the IEEE Standard 754. For the parallelism and reduction of hardware redundancy, the processor takes column vectors of homogeneous matrices as multiplication unit. To further improve the throughput, the processor structure and its control is based on a pipe-lined structure. Since the designed processor can be used as a special purpose coprocessor in robotics and computer graphics, additionally to special matrix/matrix or matrix/vector multiplication, several other useful instructions for various transformation algorithms are included for wide application of the new design. The suggested instruction set will serve as standard in future processor design for Robotics and Computer Graphics. The design is verified using FPGA implementation. Also a comparative performance improvement of the proposed design is studied compared to a uni-processor approach for possibilities of its real time application.

The method to estimate 3-D coordinates of lower trunk muscles using orientation angles during a motion (몸통 운동시 지향각(Orientation angles)을 이용한 허리 근육의 3차원 위치 좌표 추정 기법)

  • Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.125-133
    • /
    • 2002
  • The purpose of this study was to develop a method for estimating 3-D coordinates of lower trunk muscles using orientation angles during a motion. Traditional 3-D motion analysis system with DLT technique was used to track down the locations of eight reference markers which were attached on the back of the subject. In order to estimate the orientations of individual lumbar vertebrae and musculoskeletal parameters of the lower trunk muscle, the rotation matrix of the middle trunk reference frame relative to the lower trunk reference frame was determined and the angular locations of individual lumbar vertebrae were estimated by partitioning the orientation angles (Cardan angles) that represent the relative angles between the rotations of the middle and lower trunks. When the orientation angles of individual intervertebral joints were known at a given instant, the instantaneous coordinates of the origin and insertion for all selected muscles relative to the L5 local reference frame were obtained by applying the transformation matrix to the original coordinates which were relative to a local reference frame (S1, L4, L3, L2, or L1) in a rotation sequence about the Z-, X- and Y-axes. The multiplication of transformation matrices was performed to estimate the geometry and kinematics of all selected muscles. The time histories of the 3-D coordinates of the origin and insertion of all selected muscles relative to the center of the L4-L5 motion segment were determined for each trial.