• Title/Summary/Keyword: Organics

Search Result 561, Processing Time 0.025 seconds

A Study on the Removal of Taste and Odor Compounds by Activated Carbon Adsorption (활성탄(活性炭) 흡착(吸着)에 의한 취기유발물질(臭氣誘發物質) 제거(除去)에 관(關)한 연구(硏究) -GEOSMIN, 2-MIB를 중심으로-)

  • Kim, Han Seung;Kwon, Bong Kee;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.2
    • /
    • pp.12-24
    • /
    • 1994
  • The occurrence of objectionable tastes and odors in drinking water is a common and widespread problem. The most troublesome odors are usually those described as muddy or earthy-musty. Two organic compounds which have been implicated as the cause of earthy-musty odor problems in water are geosmin and 2-Methylisoborneol. These earthy-musty organics have been shown to be metabolites of actinomycetes and blue green algae. The purpose of this paper is to describe adsorbability in removing these two oder causing compounds(geosmin and 2-MIB) upon various conditions like pH variation, adding humic acid and different activated carbon. The conclusion of this study are as followings. In batch test, carbon dosage is 10mg/100ml for geosmin and 15mg/100ml for 2-MIB. Both were in equilibrium state after 60 hours. In model simulation, F-P model described experiment data and modelling data appropriately in geosmin but F-S model not. In case of 2-MIB, models didn't describe relation between experiment and modelling data well. Two causative agents of earthy-musty odor compounds, geosmin and 2-MIB, are strongly adsorbed by activated carbon either coconut or brown. There appears to be no effect of pH (3,7,9) on adsorption of these two organics. Activated carbon proved to be more effective for removing geosmin than for removing 2-MIB. When activated carbon is. used in removing these two organics, the removal of these appeared to be adversely affected by back ground organic compounds, such as humic substances, due to competitive adsorption.

  • PDF

Reduction of Organics in an Unsaturated Zone Using Zero-Valent Metals (영가금속을 이용한 불포화대에서 유기물질의 환원적 분해)

  • Kim, Jong-Gun;Kwon, Hee-won;Kim, Jeong-Jin;Hwang, In-Seong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Environmental contamination by organic compounds are not only restricted to water, but extends to soil and groundwater as well. However, highly oxidized compounds, such as halogenated organics and nitro-compounds, can be detoxified employing reducing methods. Permeable reactive barrier is one of the representative technologies where zero-valent metals (ZVMs) are employed for groundwater remediation. However, organics contaminates often contaminate the unsaturated zone above the groundwater. Despite the availability of technologies like soil vapor extraction and bioremediation, removing organic compounds from this zone represents several challenges. In this study, the reduction of nitrobenzene to aniline was achieved using zero-valent iron (ZVI) under unsaturated conditions. Results indicated that the water content was an important variable in this reaction. Under dry conditions (water content = 0.2%), the reduction reaction was inhibited; however, when the water content was between 10% and 25% (saturated condition), ZVI can reduce nitrobenzene. Palladized iron (Pd/Fe) can be used to reduce nitrobenzene when the water content is between 2.5% and 10%. The reaction was evaluated over a wide range of temperatures (10 - 40 ℃), and the results indicated that increasing the temperature resulted in increased reaction rates under unsaturated conditions.

Assessment of Seasonal Variations in the Treatment Efficiency of Constructed Wetlands

  • Reyes, Nash Jett DG.;Geronimo, Franz Kevin F.;Choi, Hyeseon;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.231-231
    • /
    • 2020
  • Unlike conventional treatment technologies, the performance of nature-based facilities were susceptible to seasonal changes and climatological variabilities. This study evaluated the effects of seasonal variables on the treatment performance of constructed wetlands (CWs). Two CWs treating runoff and discharge from agricultural and livestock areas were monitored to determine the efficiency of the systems in reducing particulates, organics, and nutrients in the influent. For all four seasons, the mean effluent suspended solids concentration in the agricultural CW (ACW) increased by -2% to -39%. The occurrence of algal blooms in the system during summer and fall seasons resulted to the greatest increase in the amount of suspended materials in the overlying water. unlike ACW, the livestock CW (LCW) performed efficiently throughout the year, with mean suspended solids removal amounting to 61% to 68%. Algal blooms were still present in LCW seasonally; however, the constant inflow in the system limited the proliferation of phytoplankton through continuous flushing. The total nitrogen (TN) and total phosphorus (TP) removal efficiencies in ACW were higher during the summer (21% to 25%) and fall (8% to 21%) seasons since phytoplankton utilize nitrogen and phosphorus during the early stages of phytoplankton blooms. In the case of LCW, the most efficient reduction in TN (24%) and TP (54%) concentrations were also noted in summer, which can be attributed to the favorable environmental conditions for microbial activities. The mean removal of organics in ACW was lowest during summer season (-52% to 35%), wherein the onset of algal decay triggered a relative increase in organic matter and stimulate bacterial growth. The removal of organics in LCW was highest (54 % to 55%) during the fall and winter seasons since low water temperatures may limit the persistence of various algal species. Variations in environmental conditions due to seasonal changes can greatly affect the performance of CW systems. This study effectively established the contributory factors affecting the feasibility of utilizing CW systems for treating agricultural and livestock discharges and runoff.

  • PDF

Rational design of rare-earth orthoferrite LnFeO3 via Ln variation towards high photo-Fenton degradation of organics

  • Thi T. N. Phan;Aleksandar N. Nikoloski;Parisa A. Bahri;Dan Li
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.41-52
    • /
    • 2024
  • In this study, rare-earth orthoferrites LnFeO3 were synthesized using a facile hydrothermal reaction and their visible-light-induced photo-Fenton degradation of organics was optimized through Ln variation (Ln = La, Pr, or Gd). The morphological, structural, and chemical characteristics of as-prepared samples were examined in detail by using different methods, including XRD, SEM, TEM, XPS, etc. On the other side, under visible light illumination, the photo-Fenton-like catalytic activities of LnFeO3 were assessed in terms of the removal of selected organic models, i.e., pharmaceuticals (ketoprofen and tetracycline) and dyes (rhodamine B and methyl orange). As compared with PrFeO3 or GdFeO3, the sample of LaFeO3 displayed more structural distortion, larger specific surface area, and narrower band gap, resulting in its higher photo-Fenton-like catalytic activity toward the degradation of organics. In organic-containing solution, in which the initial solution pH = 5, catalyst dosage = 1 g/L and H2O2 concentration = 10 mM, 98.2% of rhodamine B, 31.1% of methyl orange, 67.7% of ketoprofen, or 96.4% of tetracycline was removed after 90-min exposure to simulated visible light. Our findings revealed that variation of Ln site on rare-earth orthoferrites was an effective strategy for optimizing their organic removal via visible-light-induced photo-Fenton reaction.

Application of Electron Beam for Accelerating Composting of Sewage Sludge (하수슬러지 퇴비화촉진을 위한 전자빔의 응용)

  • Kang, Ho;Shin, Kyung-Sook;Jeong, Ji-Hyun;Schuchardt, Frank
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.62-70
    • /
    • 2010
  • A feasibility test for accelerating composting of sewage sludge irradiated with electron beam(3kGy) was investigated. Dried wood chip and leaves were used as a bulking agent and carbon source, respectively. The test variables included changes in temperature, organics and nutrients, and bioactivities from experimental and control composters. Results indicates that the temperature rose up to $60^{\circ}C$ within 1 day and maintained high temperature above $50^{\circ}C$ for more than 5 days in the irradiated sludge cake composter. It resulted in the fast degradation of organics during the initial 5 days, showing that approximately 70% of total amount of carbon degraded within 20 days was destroyed. It is likely that the composting of electron beam irradiated sludge cake is able to reduce it's maturing period significantly.

Temporal and Spatial Analysis of Non-biodegradable Organic Pollutants in the Geumho River System (금호강 수계 난분해성 유기오염물질에 대한 시·공간적 특성 분석)

  • Jung, Kang-Young;Ahn, Jung-Min;Lee, Kyung-Lak;Lee, In-Jung;Yu, Jae-Jeong;Cheon, Se-Uk;Kim, Kyo-Sik;Han, Kun-Yeun
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1343-1362
    • /
    • 2015
  • As a result of analysis based on the observed data for BOD, COD and TOC in order to manage non-biodegradable organics in the Geumho River, COD/BOD ratio was analyzed as the occupying predominance proportion. In this study, the classification(changes in water quality measurement : increase, equal, decrease) and measurement of BOD and COD were analyzed for trends over the past 10 years from 2005 to 2014 in the Geumho River. The Geumho River is expected to need non-biodegradable organics management because BOD was found to be reduced 61.1% and COD was found to be increased 50%. As a result of the analysis of land use, the Geumho-A is a unit watershed area of $921.13km^2$, which is the most common area that is occupied by forests. The Geumho-B is a unit watershed area of $436.8km^2$, which is the area that is highest occupied by agriculture and grass of 24.84%. The Geumho-C is a unit watershed area of $704.56km^2$ accounted for 40.29% of the entire watershed, which is the area that is occupied by urban of 15.12%. Load of non-biodegradable organics, which is not easy biodegradable according to the discharge, appeared to be increased because flow coefficient of COD and TOC at the Geumho-B were estimated larger than 1 value. The management of non-point sources of agricultural land is required because the Geumho-B watershed area occupied by the high proportion of agriculture and field. In this segment it showed to increase the organics that biodegradation is difficult because the ratio of BOD and TOC was decreased rapidly from GR7 to GR8. Thus, countermeasures will be required for this.

The Removal of Organics and Nutrients in an Anoxic/Oxic Process Using Surface-modified Media (표면개질 담체를 이용만 무산소/호기 공정에서의 유기물 및 영양염류 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Surface of hydrophobic media was modified to become hydrophilic by ion beam irradiation. Fixed bed biofilm reactors packed with or without surface modification were used to remove organics, nitrogen, and phosphorus from sewage. This system composed of anoxic/oxic cycles to increase the nutrient removal. A cylindrical polyethylene was used as a packing media in this study. With 12 hours of hydraulic retention time (HRT), the reactors with and without surface modification showed 95% and 92% $COD_{cr}$ removal, respectively. Both reactors showed over 95% $COD_{cr}$ removals for a longer HRT of 16 hours. Nitrogen removal ranged 54.8% to 70.2% for the surface modified system and 57.5% to 76.5% for the non-modified system under same condition. Finally, phosphorus removal ranged 59.4% to 69.8% for the surface modified system and 51.3% to 63.4% for the non-modified system under same condition. From this study organics and phosphorus were better removed in using surface modified media and vice versa for nitrogen removal.

Industrial Crystallization of Organic Compounds

  • Kim, Kwang-Joo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.33-38
    • /
    • 1997
  • Fundamentals and industrial applications of crystallization of organic compounds are reviewed. The methods to upgrade organic products in terms of its purity and its morphology are introduced. How crystallization of organics can be useful in producing ultra-pure materials are also described.

  • PDF