• 제목/요약/키워드: Organic-inorganic hybrid particle

검색결과 16건 처리시간 0.022초

폴리아민 나노 복합체를 이용한 고분자-실리카 복합체 입자 합성 (Synthesis of Polymer-Silica Hybrid Particle by Using Polyamine Nano Complex)

  • 김동영;서준희;이병진;강경구;이창수
    • 청정기술
    • /
    • 제27권2호
    • /
    • pp.115-123
    • /
    • 2021
  • 본 연구는 무기 실리카 껍질(shell)과 유기 고분자 코어(core)로 구성된 매우 균일한 유-무기 복합체 입자 제조의 방법에 관한 것이다. 먼저, 미세유체 기술을 이용하여 균일한 크기를 지니는 유기 고분자 코어 입자를 제조하였다. 코어 입자의 제조 과정에서 코어 입자의 제조 과정에서 광 경화성 유기 물질이 포함된 분산상과 연속상의 유속을 독립적으로 제어함으로써 균일한 액적을 형성하였다. 액적이 형성됨과 동시에, 미세유체 채널의 말단에서 자외선 조사에 의해 액적이 광중합 되어 코어 입자로 형성된다. 더불어, 폴리알릴아민 하이드로클로라이드(polyallylamine hydrochloride, PAH)와 인산 이온(phosphate ion)으로 구성된 나노 복합체는 최적화된 pH 조건에서 수소결합과 정전기적 인력 같은 강력한 상호작용을 통해 코어 입자에 코팅된다. 폴리아민 나노 복합체에 존재하는 PAH 주쇄의 아민 그룹들은 규산(silicic acid)의 축합(condensation) 반응을 촉매하여, 코어 입자 표면의 실리카 나노입자 성장을 시킬 수 있었다. 따라서, 본 방법을 통해 유기 코어에 무기 실리카 나노입자로 코팅된 유-무기 복합체 입자를 제조할 수 있었다. 최종적으로, 본 연구에서 제시한 방법은 보다 온화하며 환경친화적인 조건 하에서 단시간 내에 유-무기 복합체 입자를 합성할 수 있으며, 다양한 모양과 크기를 갖는 코어 입자에 적용되어 넓게 활용될 수 있다.

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

무기질 충진재와 폴리우레탄을 활용한 유·무기 복합 단열소재의 특성 평가 (Evaluation of Organic-Inorganic Hybrid Insulation Material Using Inorganic Filler and Polyurethane)

  • 이종규;소정섭;노현경
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.604-608
    • /
    • 2012
  • Recently, inorganic-organic hybrid materials have attracted much attention not only for their excellent thermal conductivity but also for their flame retardant properties. In this study, the properties of organic-inorganic hybrid insulating materials using inorganic fillers and polyurethane foam with different foaming conditions have been investigated. The addition of 1.5 wt% water to polyurethane as foaming agent shows the best foaming properties. The pore size was decreased in the foaming body with increasing of the $CaCO_3$ addition. The apparent density and thermal conductivity were increased by increasing the $CaCO_3$ addition. With an increasing amount of $CaCO_3$ powder, the flame retardant property is improved, but the properties of thermal conductivity and apparent density tend to decrease. When the addition of fine particles of $CaCO_3$, the apparent density and thermal conductivity were increased and, also, with the addition of coarse particles over $45{\mu}m$ in size, the apparent density and thermal conductivity were increased as well. In this study, the adding of $CaCO_3$ with average particle size of $27{\mu}m$ led to the lowest thermal conductivity and apparent density. After evaluation with different inorganic fillers, $Mg(OH)_2$ showed the highest thermal conductivity; on the other hand, $CaCO_3$ showed the lowest thermal conductivity.

유기 염료-무기 실리카 하이브리드 안료의 제조와 분산잉크로서 응용 (Preparation of Organic Dye-Inorganic Silica Hybrid Pigment and It's Application for Inkjet Dispersion Ink)

  • 전영민;김종규;공명선
    • 한국재료학회지
    • /
    • 제16권7호
    • /
    • pp.422-429
    • /
    • 2006
  • Studies were performed on preparation of organic-inorganic hybrid silica dye in a dispersing ink system. The silica was subjected to surface modification using 3-aminopropyltrimethoxysilane (APTMS) in order to promote the chemical reactivity of the raw silica. On the surfaces of the aminosilane-functionalised silica, red vinylsulfone-containing azo dye was adsorbed. The dye was found to have chemically reacted with the aminosilane-grafted silica surface, which was proven by FT-IR spectra. Studies on morphology and microstructure were performed employing scanning electron microscopy. The SEM micrographs and particle size distributions showed that a homogeneous pigment can be obtained employing silica as a core. Particle size distribution was also examined using the technique of dynamic light scattering. The ensuing pigment was subjected to various physicochemical evaluation such as inkjet property, storage stability, color change as inkjet ink using printer, spectrophotometric, microscopic techniques. Studies on hybrid dyes from the silica surface demonstrated that, in general, stable pigments for inkjet dispersion ink were obtained.

Effect of Heat Treatment on the Morphology and Transparency of Thick Inorganic-Organic Hybrid Films Prepared by the Electrophoretic Sol-Gel Deposition of Polyphenylsilsesquioxane Particles

  • Hasegawa, Koichi;Katagiri, Kiyofumi;Matsuda, Astunori;Tatsumisago, Masahiro;Minami, Tsutomu
    • The Korean Journal of Ceramics
    • /
    • 제6권1호
    • /
    • pp.15-20
    • /
    • 2000
  • Thick inorganic-organic hybrid films were prepared on ITO-coated glass substrates by the electrophoretic sol-gel deposition of polyphenylsilsesquioxane particles. The morphology of the deposited films changed from the aggregate of the spherical particles to monolith by heat treatment at temperatures higher than $200^{\circ}C$. Transparency of the films was significantly improved accompanied by the morphological change of the particles. The degree of the morphological change was governed by two factors; maximum heat treatment temperature and heating rate. Transparent thick films of ca. 3$\mu\textrm{m}$ in thickness were obtained only by heat treatment at $400^{\circ}C$ for 2h with rapid heating from room temperature to $400^{\circ}C$. These films obtained were strongly adhered to the ITO-coated glass substrates and has a very smooth surface.

  • PDF

Staggered and Inverted Staggered Type Organic-Inorganic Hybrid TFTs with ZnO Channel Layer Deposited by Atomic Layer Deposition

  • Gong, Su-Cheol;Ryu, Sang-Ouk;Bang, Seok-Hwan;Jung, Woo-Ho;Jeon, Hyeong-Tag;Kim, Hyun-Chul;Choi, Young-Jun;Park, Hyung-Ho;Chang, Ho-Jung
    • 마이크로전자및패키징학회지
    • /
    • 제16권4호
    • /
    • pp.17-22
    • /
    • 2009
  • Two different organic-inorganic hybrid thin film transistors (OITFTs) with the structures of glass/ITO/ZnO/PMMA/Al (staggered structure) and glass/ITO/PMMA/ZnO/Al (inverted staggered structure), were fabricated and their electrical and structural properties were compared. The ZnO thin films used as active channel layers were deposited by the atomic layer deposition (ALD) method at a temperature of $100^{\circ}C$. To investigate the effect of the substrates on their properties, the ZnO films were deposited on bare glass, PMMA/glass and ITO/glass substrates and their crystal properties and surface morphologies were analyzed. The structural properties of the ZnO films varied with the substrate conditions. The ZnO film deposited on the ITO/glass substrate showed better crystallinity and morphologies, such as a higher preferred c-axis orientation, lower FWHM value and larger particle size compared with the one deposited on the PMMA/glass substrate. The field effect mobility ($\mu$), threshold voltage ($V_T$) and $I_{on/off}$ switching ratio for the OITFT with the staggered structure were about $0.61\;cm^2/V{\cdot}s$, 5.5 V and $10^2$, whereas those of the OITFT with the inverted staggered structure were found to be $0.31\;cm^2/V{\cdot}s$, 6.8 V and 10, respectively. The improved electrical properties for the staggered OITFTs may originate from the improved crystal properties and larger particle size of the ZnO active layer.

  • PDF

표면전하를 이용한 SiO2/PMMA 분말의 분산 제어 및 평가 (Dispersion Control and Characterization of the SiO2/PMMA Particles Using Surface Charge)

  • 강유빈;손수정;이근재
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.403-407
    • /
    • 2015
  • Poly-methylmetacrylate (PMMA) is mainly applied in the plastic manufacturing industry, but PMMA is weak and gradually got discolor. The strength of PMMA can be improved through organic-inorganic hybrid nano composites with inorganic nano particles such as, $SiO_2$ or ZrO. However, inorganic nano particles are mostly agglomerated spontaneously. In this study, the zeta potential is controlled using different types of organic solvent with different concentrations, dispersibillity of $SiO_2$ nano particles on the PMMA particle are analyzed. When 3 M acetic acid is used, absolute value of the zeta potential is higher, $SiO_2$ nano particle is well attached, and dispersed on the PMMA particle surface. Results indicate that the absolute value of the zeta potential affects the stability of $SiO_2$ dispersion.

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권3호
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).

유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조 (Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process)

  • 황승희;김효원;김주영
    • 접착 및 계면
    • /
    • 제21권4호
    • /
    • pp.143-155
    • /
    • 2020
  • Sol-Gel 공정을 통해서 제조되는 유-무기 하이브리드 화합물들은 방청 코팅, 방빙 코팅(Anticing), 자가 세정 코팅, 반사 방지 코팅 등과 같은 기능성 코팅 재료로 널리 사용되어져 왔다. 특히 소수성 코팅 표면을 제조하기 위해서는 코팅표면의 표면에너지가 낮고 코팅 표면의 조도를 제어가 요구된다. 표면에너지와 표면 조도를 조절하는 전형적인 공정은 in-situ fabrication 공정, 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating이다. 본 연구에서는 in-situ fabrication 공정인 Particle-Binder 공정을 이용해서 소수성 코팅표면을 제조하였다. 3관능기 유기실란화합물과 불소 함유 유기실란 화합물과의 가수분해 및 축합반응을 통해 제조된 불소함유 유-무기 하이브리드를 바인더로 사용하여서 무기물 나노입자와 혼합하여 소수성 코팅액을 제조하고 유리 기재 위에 스핀코팅 후 열건조하여서 코팅막을 제조하였다. 바인더인 유-무기 하이브리드 화합물의 불소 함유 실란화합물의 첨가량, 첨가순서, 무기물 나노입자 첨가량에 따른 코팅막의 물성 변화를 조사하였다. 분석결과 불소 함량이 10 wt%인 유-무기 하이브리드 화합물(GPTi-HF10)을 바인더로 사용하여서 제조된 코팅막이 가장 소수성이 우수하였으며 수접촉각은 (107.52 ± 1.6°), 이 바인더와 무기물 나노입자의 무게비가 1:3인 경우(GPTi-HF10-MS 3.0)에 가장 높은 수접촉각(130.84±1.99°)을 나타내었다.

Silane계 유무기 하이브리드 적용 합금도금강판 내식성 향상 코팅 기술 개발 (Development of anti-corrosive coating technique for alloy plated steel sheet using silane based organic-inorganic hybrid materials)

  • 박종원;이경황;박병규;홍신협
    • Corrosion Science and Technology
    • /
    • 제12권6호
    • /
    • pp.295-303
    • /
    • 2013
  • Silane surface treatments have been developed as an alternative for toxic and carcinogenic chromate-based treatments for years. It is consistently observed that ultra-thin films offer excellent corrosion protection as well as paint adhesion to metals. The silane performance is comparable to, or in some cases better than, that of chromate layers. Based on the tetra-ethylorthosilicate(TEOS) and methlyl trieethoxysilane(MTES), inorganic sol was synthesized and formed hybrid networks with $SiO_2$ nano particle and polypropylene glycol(PPG) on Zn alloyed steel surface. According to SST results, addition of 10nm and 50nm $SiO_2$ nanoparticle in synthesized solution improved anti-corrosion property by its shear stress relaxation effect during curing process. Also, SST results were shown that anti-corrosive property was affected by the amounts of organic compounds.