DOI QR코드

DOI QR Code

Development of anti-corrosive coating technique for alloy plated steel sheet using silane based organic-inorganic hybrid materials

Silane계 유무기 하이브리드 적용 합금도금강판 내식성 향상 코팅 기술 개발

  • Park, Jongwon (Ulsan Industrial Technology Research Center, Research Institute of Industrial Science & Technology) ;
  • Lee, Kyunghwang (Ulsan Industrial Technology Research Center, Research Institute of Industrial Science & Technology) ;
  • Park, Byungkyu (Surface Treatment Department, AK ChemTech Co., Ltd.) ;
  • Hong, Shinhyub (Surface Treatment Department, AK ChemTech Co., Ltd.)
  • 박종원 (포항산업과학연구원 울산플랜트연구본부) ;
  • 이경황 (포항산업과학연구원 울산플랜트연구본부) ;
  • 박병규 (에이케이켐텍 표면처리부) ;
  • 홍신협 (에이케이켐텍 표면처리부)
  • Received : 2013.11.11
  • Accepted : 2013.12.20
  • Published : 2013.12.31

Abstract

Silane surface treatments have been developed as an alternative for toxic and carcinogenic chromate-based treatments for years. It is consistently observed that ultra-thin films offer excellent corrosion protection as well as paint adhesion to metals. The silane performance is comparable to, or in some cases better than, that of chromate layers. Based on the tetra-ethylorthosilicate(TEOS) and methlyl trieethoxysilane(MTES), inorganic sol was synthesized and formed hybrid networks with $SiO_2$ nano particle and polypropylene glycol(PPG) on Zn alloyed steel surface. According to SST results, addition of 10nm and 50nm $SiO_2$ nanoparticle in synthesized solution improved anti-corrosion property by its shear stress relaxation effect during curing process. Also, SST results were shown that anti-corrosive property was affected by the amounts of organic compounds.

Keywords

References

  1. M. S. Lee, and N. J. Jo, J. Korean Ind. Eng. Chem., 12, 643 (2001).
  2. S. Kwak, J. Shim, H. G. Yoon, and K. H. Lee, Polymer Sci. Tech., 14, 181 (2003).
  3. J. D. Mackenzie, and E. P. Bescher, J. Sol-Gel Sci. Tech., 19, 23 (2000). https://doi.org/10.1023/A:1008701903087
  4. G. Schottner, K. Rose, and U. Posset, J. Sol-Gel Sci. Tech., 27, 719 (2003).
  5. J. K. Park, J. C. Song, H. U. Kang, and S. H. Kim, HWAHAK KONGHAK, 40, 735 (2002).
  6. O. H. Park, Y. J. Park, Y. K. Choi, B. S. Bae, J. Sol-Gel Sci. Tech., 16, 235 (1999). https://doi.org/10.1023/A:1008717219952
  7. Y. J. Eo, D. J. Kim, B. S. Bae, K. C. Song and T. Y. Lee, J. Sol-Gel Sci. Tech., 13, 409 (1998). https://doi.org/10.1023/A:1008665010016
  8. D. H. Son, UV-curable organic-inorganic hybrid coating for flexible display substrate, Korea University of Technology and Education (2006).
  9. D. W. Nam, Study on the preparation and characterization of organic-inorganic hybrids, Korea University of Technology and Education (2008).
  10. T. M. Lopez, D. Avnir and M. Aegerter, Emerging fields in sol-gel science and technology, Kluwer academic publishers, p.96 (2003).
  11. Ralph K. Iler., The chemistry of silica, John Wiley & Sons, New York, p.412 (1979).
  12. F. Caruso., Colloids and Colloid assemblies, Wiley-Vch Verlag GmbH & Co. KGaA, p.525 (2004).
  13. Y. J. Eo, Fabrication and characteristics of silica-polymer nano hybrid materials by non-hydrolysis sol-gel, Ph. D. Thesis, KAIST (2005).
  14. H. E. Bergna, W. O. Roberts, Colloidal silica fundamentals and applications, CRC Press. p.130 (2006).
  15. A. C. Pierre, Introduction to sol-gel processing, Kluwer academic publishers, p.133 (1998).
  16. D. Segal, Chemical synthesis of advanced ceramic materials, Cambridge University Press, p.34 (1989).
  17. J. Bieleman., Additives for coatings, Wiley-Vch, New-York, p.75 (2000).
  18. Y. C. Ke and P. Stroeve, Polymer-layered silicate and silica nanocomposites, Elsevier B. V., p.39 (2005).
  19. W. Que, Y. Zhou, Y. L. Lam, Y. C. Chan and C. H. Kan, Thin Solid Films, 358, 16 (2000). https://doi.org/10.1016/S0040-6090(99)00683-5
  20. Y. J. Ji, Y. J. Shin, Y. R. Shin, J. Y. Kim, Y. S. Yoon and J. S. Shin, J. Adhesion Interface, 7, 234 (2006).
  21. V. Palanivel, D. Zhu and W. J. van Ooji, Pro. Organic Coat., 47, 384 (2003). https://doi.org/10.1016/j.porgcoat.2003.08.015