• Title/Summary/Keyword: Organic-inorganic composite

Search Result 174, Processing Time 0.023 seconds

Study of Synthesis and Performance of Covalently Cross-Linked SPEEK/Cs-TSiA Composite Membranes with Ceria Contents for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TSiA 막의 Ceria의 함량에 따른 제조 및 성능 연구)

  • YOON, DAE-JIN;OH, YUN-SUN;SEO, HYEON;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.212-220
    • /
    • 2015
  • The engineering plastic of sulfonated polyether ether ketone (SPEEK) as a polymer matrix has been developed in this lab to replace Nafion, solid polymer electrolytes of perfluorosulfonic acid membrane which has several flaws such as high cost, and limited operational temperature above $80^{\circ}C$. The SPEEK was prepared in the sulfonation reaction of polyether ether ketone (PEEK). The organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstosilicic acid (Cs-TSiA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TSiA/ceria 1% membrane showed the optimum results such as 0.1882 S/cm of proton conductivity at $80^{\circ}C$, and 99.61 MPa of tensile strength which were better than Nafion 117 membrane.

Research of Characterization of Covalently Cross-linked SPEEK/Cs-Substituted MoPA/Ceria 1wt% Composite Membrane for Water Electrolysis (Cs 치환에 따른 수전해용 공유가교 SPEEK/Cs(n)-MoPA/Ceria 1%(n = 1~3) 복합막의 특성 연구)

  • Park, Daeyoung;Hwang, Sungha;Oh, Seunghee;Yoon, Daejin;Kang, Ansoo;Moon, Sangbong;Chung, Janghoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted phophomolybdic acid(Cs-MoPA) with cross-linking agent contents of 0.01mL. In conclusion, CL-SPEEK/$Cs_{(2.5)}$-MoPA/ceria(1%) membrane showed the optimum results such as 0.1095S/cm of proton conductivity at $80^{\circ}C$, 2.906meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 49.73MPa of tensile strength which were better than Nafion 117 membrane.

The Preparation and Characteristics of Covalently Cross-Linked SPEEK/Cs-TPA/Ceria Composite Membranes for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TPA/Ceria 복합막의 제조 및 특성 연구)

  • Song, Minah;Ha, Sungin;Park, Deayong;Ryu, Cheolhwi;Moon, Sangbong;Kang, Ansoo;Chung, Janghoon
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.437-447
    • /
    • 2012
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstophosphoric acid (Cs-TPA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TPA/ceria (1%) membrane showed the optimum results such as 0.130 S/cm of proton conductivity at $80^{\circ}C$, 2.324 meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 65.03 MPa of tensile strength which were better than Nafion 117 membrane.

Preparation of Periodic Mesoporous Organosilica/Polymer Composite (주기적인 메조포러스 유기실리카/고분자 복합재료 제조)

  • Dun, Li;Sur, Gil-Soo
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.289-293
    • /
    • 2010
  • Periodic mesoporous organosilicas (PMO) were synthesized using bis(triethoxy silyl) ethane (BTEE) as the precursor and dodecyl trimethyl ammonium bromide(DTMA), cetyl trimethyl ammonium bromide(CTMA), and octadecyl trimethyl ammonium bromide(ODTMA) as the templating agents. The surface area and pore volume of PMO decrease with the increasing of chain length of templating agents. However, the chain length of templating agents almost has no effect on the pore diameter of PMO. From the XRD and the DSC experiments, we found that the chain length of surfactants using as the templating agents has an effect on the melting transition of polyethylene. But it has no effect on the melting transition of poly(ethylene oxide). The results of TGA prove that the thermal decomposition temperature of polymer which was penetrated into PMO was increased.

Stabilization of Covalently Cross-Linked SPEEK/Cs-Substituted HPA Composite Membranes for Water Electrolysis ($Cs^+$치환에 따른 수전해용 공유가교 SPEEK/HPA 복합막의 안정화)

  • Jee, Bong-Chul;Ha, Sung-In;Song, Min-Ah;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • To improve the mechanical properties, such as durabilities and antioxidative characteristics, the covalently cross-linked (CL-) SPEEK (sulfonated polyether ether ketone)/Cs-substituted HPA (heteropoly acid) organic-inorganic composite membranes (CL-SPEEK/Cs-HPAs), have been intensively investigated. The composite membrane were prepared by blending cesium-substituted HPAs (Cs-HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA) with cross-linking agent content of 0.01 mL. And composite electrolytes composed of Cs-HPAs, prepared by immersion (imm.) and titration (titr.) methods to increase the stability of HPAs in water, were applied to polymer electrolyte membrane electrolysis (PEME). As a result, the proton conductivity of Cs-substituted composite membranes increased rapidly over $60^{\circ}C$ but mechanical properties, such as tensile strength, decreased in accordance with added Cs content. The bleeding-out of Cs-TPA membranes by titration method (50 vol.% Cs) decreased steadily to 2.15%. In the oxidative stability test by Fenton solution, the durability of membranes with Cs-HPA significantly increased. In case of CL-SPEEK/ Cs-TPA membrane, duration time increased more than 1200 hours. It is expected that even though CL-SPEEK/Cs-MoPA membrane shows the high proton conductivity, electrocatalytic activity and cell voltage of 1.80 V for water electrolysis, the CL-SPEEK/Cs-TPA (imm.) is more suitable as an alternative membrane in real system with the satisfactory proton conductivity, mechanical properties, anti-oxidative stability and cell voltage of 1.89 V.

Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method (광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향)

  • Cho, Gyeong Sook;Lee, Dong-Hyun;Kim, Dae Sung;Lim, Hyung Mi;Kim, Chong Youp;Lee, Seung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.622-627
    • /
    • 2013
  • Colloidal silica is used in various industrial products such as chemical mechanical polishing slurry for planarization of silicon and sapphire wafer, organic-inorganic hybrid coatings, binder of investment casting, etc. An accurate determination of particle size and dispersion stability of silica sol is demanded because it has a strong influence on surface of wafer, film of coatings or bulks having mechanical, chemical and optical properties. The study herein is discussed on the effect of measurement results of average particle size, sol viscosity and electrophoretic mobility of particle according to the volume fraction of eight types of silica sol with different size and surface properties of silica particles which are presented by the manufacturer. The measured particle size and the mobility of these sol were changed by volume fraction or particle size due to highly active surface of silica particle and change of concentration of counter ion by dilution of silica sol. While in case the measured sizes of small particles less than 60 nm are increased with increasing volume fraction, the measured sizes of larger particles than 60 nm are slightly decreased. The mobility of small particle such as 12 nm are decreased with increase of viscosity. However, the mobility of 100 nm particles under 0.048 volume fraction are increased with increasing volume fraction and then decreased over higher volume fraction.

Enhanced Performance of Li Metal Negative Electrode using Protection Film by Carbon Black and Polymeric Binder (카본블랙과 고분자 바인더로 구성된 보호필름을 통한 리튬금속 음극의 성능개선)

  • Noh, Seong Ho;Ryu, Da Young;Jang, Young Seok;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2022
  • In this study, the surface protection film based on organic-inorganic composite is manufactured for suppressing lithium dendrite growth, and the film is applied on the surface of Li metal negative electrode for lithium metal batteries (LMBs). The film is consist of the polyvinylidene fluoride (PVDF) polymeric binder which has good mechanical strength and high electrochemical stability, and carbon black (Super-P) which has outstanding electrical conductivity as the inorganic compound. First, in order to confirm the suppression of the internal short circuit by the lithium dendrite, the time required for the short circuit is measured while a constant current is continuously applied. As a result, the internal short circuit is delayed in proportion to the carbon black content of the film, and it is significantly delayed than bare Li metal electrode which does not use protection film. The cycle performance of the thick protection film (8 ㎛), is worse than that of the thin film (4 ㎛). However, as the carbon black content of the film increased, the cycle performance is improved. Thus, the surface protection film based on carbon black/PVDF composite can delay the internal short circuit, and has low overvoltage during the cycle. However, more stable cycle performance needs to be built through further improvements.

A Study on Increased Properties of Cellulose-Based Biodegradable Polymer Composites (셀룰로오스 기반 생분해성 고분자 복합재의 물성 증가에 관한 연구)

  • Sangjun Hong;Ajeong Lee;Sanghyeon Ju;Youngeun Shin;Teahoon Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.126-131
    • /
    • 2023
  • Growing environmental concerns regarding pollution caused by conventional plastics have increased interest in biodegradable polymers as alternative materials. The purpose of this study is to develop a 100% biodegradable nanocomposite material by introducing organic nucleating agents into the biodegradable and thermoplastic resin, poly(lactic acid), to improve its properties. Accordingly, cellulose nanofibers, an eco-friendly material, were adopted as a substitute for inorganic nucleating agents. To achieve a uniform dispersion of cellulose nanofibers (CNFs) within PLA, the aqueous solution of nanofibers was lyophilized to maintain their fibrous shape. Then, they were subjected to primary mixing using a twin-screw extruder. Test specimens with double mixing were then produced by injection molding. Differential scanning calorimetry was employed to confirm the reinforced physical properties, and it was found that the addition of 1 wt% CNFs acted as a reinforcing material and nucleating agent, reducing the cold crystallization temperature by approximately 14℃ and increasing the degree of crystallization. This study provides an environmentally friendly alternative for developing plastic materials with enhanced properties, which can contribute to a sustainable future without consuming inorganic nucleating agents. It serves as a basis for developing 100% biodegradable green nanocomposites.

Biodegradable Inorganic-Organic Composite Artificial Bone Substitute -in vitro biocompatibility evaluation by cell culture- (유기질과 무기질 복합체를 이용한 체내흡수형 인공골재료에 관한 연구 -세포배양에 의한 생체적합성 평가-)

  • Ahn, Sue-Jin;Kim, Yo-Sook;Lee, Choon-Ki;Suh, Hwal
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.331-336
    • /
    • 1995
  • A composite material was produced as an artificial bone substitute which is gradually degrAded and replaced by the regenerated natural bones after implantation. To detect the effect of the material on the cell's activity, the composite specimens were placed in MEMs and incubated at $37^{\circ}C$ for one week. Human uterus cervical cancer origin HeLa 3 cells and mouse subcutaneous origin L929 cells were cul- tured in the specimen dissolved MEMs for 5 days to investigate cytotoxicity via cell growth rates. ${Na_2}^{51}CrO_4$ solution was added to the media, to label the HeLa 53 cells, and the released amount of $^{51}Cr$ was measured by a $\gamma$-counter. On the cell growth investigation, no significant cytotoxic phenomena were revealed in both HeLa S3 and L929 cell cultures. On the released 51CR from the incubated HeLa 53 cells, no significant cell degeneration was observed from the composite embedded MEMs.

  • PDF

Proton Conducting Composite Membranes Consisting of PVC-g-PSSA Graft Copolymer and Heteropolyacid (PVC-g-PSSA가지형 공중합체와 헤테로폴리산을 이용한 수소이온 전도성 복합 전해질막)

  • Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Yeon, Seung-Hyeon;Ahn, Ik-Sung;Park, Jin-Won
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • A series of organic-inorganic composite membranes from poly(vinyl chloride) (PVC) graft copolymer electrolyte and heteropolyacid (HPA) were prepared for proton conducting membranes. First, poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. HPA nanoparticles were then incorporated into the PVC-g-PSSA graft copolymer though the hydrogen bonding interactions, as confirmed by FT-IR spectroscopy. The proton conductivity of the composite membranes increased from 0.049 to 0.068 S/cm at room temperature with HPA contents up to 0.3 weight traction of HPA, presumably due to both the intrinsic conductivity of HPA particles and the enhanced acidity of the sulfonic acid of the graft copolymer. The water uptake decreased from 130 to 84% with the increase of HPA contents up to 0.45 of HPA weight traction, resulting from the decrease in number of water absorption sites due to hydrogen bonding interaction between the HPA particles and the polymer matrix. Thermal gravimetric analysis (TGA) demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of HPA.