DOI QR코드

DOI QR Code

Enhanced Performance of Li Metal Negative Electrode using Protection Film by Carbon Black and Polymeric Binder

카본블랙과 고분자 바인더로 구성된 보호필름을 통한 리튬금속 음극의 성능개선

  • Noh, Seong Ho (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Ryu, Da Young (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Jang, Young Seok (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
  • 노성호 (한국산업기술대학교 생명화학공학과) ;
  • 류다영 (한국산업기술대학교 생명화학공학과) ;
  • 장영석 (한국산업기술대학교 생명화학공학과) ;
  • 류지헌 (한국산업기술대학교 지식기반기술.에너지대학원)
  • Received : 2022.02.03
  • Accepted : 2022.02.18
  • Published : 2022.02.28

Abstract

In this study, the surface protection film based on organic-inorganic composite is manufactured for suppressing lithium dendrite growth, and the film is applied on the surface of Li metal negative electrode for lithium metal batteries (LMBs). The film is consist of the polyvinylidene fluoride (PVDF) polymeric binder which has good mechanical strength and high electrochemical stability, and carbon black (Super-P) which has outstanding electrical conductivity as the inorganic compound. First, in order to confirm the suppression of the internal short circuit by the lithium dendrite, the time required for the short circuit is measured while a constant current is continuously applied. As a result, the internal short circuit is delayed in proportion to the carbon black content of the film, and it is significantly delayed than bare Li metal electrode which does not use protection film. The cycle performance of the thick protection film (8 ㎛), is worse than that of the thin film (4 ㎛). However, as the carbon black content of the film increased, the cycle performance is improved. Thus, the surface protection film based on carbon black/PVDF composite can delay the internal short circuit, and has low overvoltage during the cycle. However, more stable cycle performance needs to be built through further improvements.

본 연구에서는 리튬금속 수지상의 형성을 효과적으로 억제하기 위해 리튬금속 표면에 물리적 보호막을 제공할 필름을 제조하였다. 필름은 기계적 강도가 우수하고 전기화학적 안정성이 높은 바인더인 유기물 polyvinylidene fluoride (PVDF)와 전기전도성이 우수한 무기물 입자인 카본블랙(Super-P)을 사용해 유무기 복합체 기반의 필름을 제조하고 리튬금속 음극의 표면에 적용하였다. 먼저 필름이 내부단락을 지연시키는 정도를 확인하기 위해 일정한 값의 전류를 계속 인가하며 내부단락의 발생을 측정하였다. 그 결과 보호필름에 사용된 카본블랙 함량이 증가함에 따라 내부단락 시점이 지연되었으며, 필름을 사용하지 않은 리튬금속 전극과 비교할 때 내부단락 시점이 크게 지연된 것을 확인하였다. 또한, 필름의 두께와 함량을 달리하여 전기화학적 성능을 평가한 경우, 필름의 두께가 두꺼운 것이 사이클 성능이 좋지 않았고 카본블랙 함량이 늘어날수록 사이클 성능이 개선됨을 확인하였다. 이처럼 카본블랙을 포함한 고분자 필름을 리튬금속 표면에 적용함으로써 내부단락 시점이 지연되고 사이클이 진행되는 동안 낮은 과전압을 나타내는 것이 확인되었지만, 추가적인 개선을 통해 더 안정한 사이클 성능이 확보되어야 할 것이다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0002007, 2021년 산업혁신인재성장지원사업) 및 중소벤처기업부에서 지원하는 2021년도 산학연Collabo R&D (No. S3106503) 사업지원에 의한 연구임.

References

  1. T.-H. Kim, J.-S. Park , S.K. Chang , S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase', Adv. Energy Mater., 2, 860 (2012). https://doi.org/10.1002/aenm.201200028
  2. H. Li, Z.X. Wang, L.Q. Chen, and X.J. Huang, 'Research on Advanced Materials for Li-ion Batteries', Adv. Mater., 21, 4593 (2009). https://doi.org/10.1002/adma.200901710
  3. R. Schmuch, R. Wagner, G. Horpel, T. Placke, and M. Winter, 'Performance and cost of materials for lithium-based rechargeable automotive batteries', Nat. Energy, 3, 267-278 (2018). https://doi.org/10.1038/s41560-018-0107-2
  4. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhangad, and J.-G. Zhang, 'Lithium metal anodes for rechargeable batteries', Energy Environ. Sci., 7, 513-537 (2014). https://doi.org/10.1039/C3EE40795K
  5. L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo, X. Shen, J.-K. Kim, 'Dendrite-free lithium metal and sodium metal batteries', Energy Storage Mater., 27, 522-554 (2020). https://doi.org/10.1016/j.ensm.2019.12.014
  6. K. G. Callagher, S. Goebel, T. Grezsler, M. Mathias, W. Oelerich, D. Eroglu, and V. Srinivasa, 'Quantifying the promise of lithium-air batteries for electric vehicles', Energy Environ. Sci., 7, 1555-1563 (2014). https://doi.org/10.1039/c3ee43870h
  7. Huijuan ZhaoNanping DengJing YanWeimin KangJingge JuYanli RuanXiaoqing WangXupin ZhuangQuanxiang LiBowen Cheng, 'A review on anode for lithium-sulfur batteries: Progress and prospects', Chem. Eng. J., 347, 343-365 (2018). https://doi.org/10.1016/j.cej.2018.04.112
  8. J.-S. Kim, S.-H. Bae, M.-J. Hwang, M.-Y. Heo, and C.-H. Doh, 'Separator Effect on the Cell Failure of Lithium Secondary Battery using Lithium Metal Electrode', J. Korean Electrochem. Soc., 14, 171-175 (2011). https://doi.org/10.5229/JKES.2011.14.3.171
  9. M. Lee, D. Lee, J. Han, J. Jeong, H. Choi, H. Lee, M. Lim, and H. Lee, 'A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research', J. Korean Electrochem. Soc., 24, 65-75 (2021). https://doi.org/10.5229/JKES.2021.24.3.65
  10. D.Wang, H. Liu, F. Liu, G. Ma, J. Yang, X. Gu, M. Zhou, and Z. Chen, 'Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries', Nano Lett., 21, 4757-4764 (2021). https://doi.org/10.1021/acs.nanolett.1c01241
  11. Q. Lu, Y.-B. He, Q. Yu, B. Li, Y.V. Kaneti, Y. Yao, F. Kang, and Q.-H. Yang, 'Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte', Adv. Mater., 29, 1604460 (2017). https://doi.org/10.1002/adma.201604460
  12. R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, and J.-Q. Huang, 'Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode', Adv. Funct. Mater., 28, 1705838 (2018). https://doi.org/10.1002/adfm.201705838
  13. Z. Zhou, Y. Feng, J. Wang, B. Liang, Y. Li, Z. Song, D.M. Itkis, and J. Song, 'A robust, highly stretchable ion-conducive skin for stable lithium metal batteries', Chem. Eng. J., 396, 125254 (2020). https://doi.org/10.1016/j.cej.2020.125254
  14. Z. Gao, S. Zhang, Z. Huang, Y. Lu, W. Wang, K. Wang, J. Li, Y. Zhou, L. Huang, and S. Sun, 'Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries', Chin. Chem. Lett., 30, 525-528 (2019). https://doi.org/10.1016/j.cclet.2018.05.016
  15. Y. Zhou, X. Zhang, Y. Ding, L. Zhang, and G. Yu, 'Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries', Adv. Mater., 32, 2005763 (2020). https://doi.org/10.1002/adma.202005763
  16. H. Kang , M. Song , M. Yang, and J.-w. Lee, 'Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries', J. Power Sources, 485, 229286 (2021). https://doi.org/10.1016/j.jpowsour.2020.229286
  17. J. Xiao, P. Zhai, Y. Wei, X. Zhang, W. Yang, S. Cui, C. Jin, W. Liu, X. Wang, H. Jiang, Z. Luo, X. Zhang, and Y. Gong, 'In-Situ Formed Protecting Layer from Organic/Inorganic Concrete for Dendrite-Free Lithium Metal Anodes', Nano Lett., 20, 3911-3917 (2020). https://doi.org/10.1021/acs.nanolett.0c01085
  18. X. Gao, Y. Du, S. Li, J. Zhou, X. Feng, X. Jin, and B. Wang, 'Synergistic Effects of Inorganic-Organic Protective Layer for Robust Cycling Dendrite-Free Lithium Metal Batteries', ACS Appl. Mater. Interfaces, 12, 844-850 (2020). https://doi.org/10.1021/acsami.9b18703
  19. Y. Liu, S. Liu, S. Tan, Z. Jiang, X. Hu, H. Lu, G. Yin, Y. Gao,and Y. Ma, 'Constructing an inorganic/organic mixed protective film for low-cost fabrication of stable lithium metal anode', J. Alloys Compd., 818, 152862 (2020). https://doi.org/10.1016/j.jallcom.2019.152862
  20. K.J. Kim, 'Development of Polyvinyl Alcohol (PVA) Non-woven Separator Coated with ZrO2 Ceramic Nanoparticles for Improving Electrochemical Performance and Thermal Property of Lithium Ion Batteries', J. Korean Electrochem. Soc., 20, 49-54 (2017). https://doi.org/10.5229/JKES.2017.20.3.49
  21. S.H. Jang and J.-K. Kim, 'Polymer-Ceramic Composite Gel Polymer Electrolyte for High-Electrochemical-Performance Lithium-Ion Batteries', J. Korean Electrochem. Soc., 19, 123-128 (2016). https://doi.org/10.5229/JKES.2016.19.4.123