• Title/Summary/Keyword: Organic wastewater

Search Result 1,238, Processing Time 0.033 seconds

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad;Geissen, Sven-Uwe;Vogelpohl, Alfons
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2021
  • Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

Bio-oil production using residual sewage sludge after lipid and carbohydrate extraction

  • Supaporn, Pansuwan;Ly, Hoang Vu;Kim, Seung-Soo;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.202-210
    • /
    • 2019
  • In order to maximize the utilization of sewage sludge, a waste from wastewater treatment facility, the residual sewage sludge generated after lipid and carbohydrate extraction for biodiesel and bioethanol production was used to produce bio-oil by pyrolysis. Thermogravimetric analysis showed that sludge pyrolysis mainly occurred between 200 and $550^{\circ}C$ (with peaks formed around 337.0 and $379.3^{\circ}C$) with the decomposition of the main components (carbohydrate, lipid, and protein). Bio-oil was produced using a micro-tubing reactor, and its yield (wt%, g-bio-oil/g-residual sewage sludge) increased with an increase in the reaction temperature and time. The maximum bio-oil yield of 33.3% was obtained after pyrolysis at $390^{\circ}C$ for 5 min, where the largest amount of energy was introduced into the reactor to break the bonds of organic compounds in the sludge. The main components of bio-oil were found to be trans-2-pentenoic acid and 2-methyl-2-pentenoic acid with the highest selectivity of 28.4% and 12.3%, respectively. The kinetic rate constants indicated that the predominant reaction pathway was sewage sludge to bio-oil ($0.1054min^{-1}$), and subsequently to gas ($0.0541min^{-1}$), rather than the direct conversion of sewage sludge to gas ($0.0318min^{-1}$).

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

Effects of potassium and carbon addition on bacterial algae bioremediation of boezem water

  • Nurhayati, Indah;Ratnawati, Rhenny;Sugito, Sugito
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.495-500
    • /
    • 2019
  • Bioremediation of bacterial algae is one of wastewater treatment by utilizing symbiosis of bacterial algae, which is relatively inexpensive and safe for the environment. The aims of this research were: (1) to investigate initial characteristic of boezem water of Kalidami Surabaya, (2) to investigate the effect of potassium (K) element and carbon source addition toward the reduction of $NH_3-N$ content and organic matter in $KMnO_4$ of boezem water. The research conducted in a laboratory in batches without adding aeration. The initial stage of this research was conducting alga culture until it was obtained chlorophyll-a algae concentration of $3.5{\pm}0.5mg/L$. The best result of range finding test was a comparison of boezem water volume with algal which were about 25%:75%. The research conducted in duplo over 18 d. The result of the research can be concluded that boezem water of Kalidami Surabaya for the parameter of pH, temperature, $NH_3-N$, dissolved oxygen, chemical oxygen demand, biological oxygen demand, and number of $KMnO_4$ show that it enables to do bioremediation of bacterial algae. Decrease efficiency occurred in a reactor with the addition of element K 3% and source C. $NH_3-N$ and $KMnO_4$ final content 0.164 mg/L and 30 mg/L, respectively.

Effect of Temperature on Nitritation using Effluent of Anaerobic Digester (혐기 소화조 유출수의 아질산화 반응에 온도가 미치는 영향)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2011
  • Preparing for the Standards for Effluents which will be strengthen from 2012, many ways like remodellings and repairs of sewage treatment plant (STP) are considered. The treatment of the recycle water from the sludge treatment process contains high-strength organic compounds and nitrogen is considered as alternative. In the treatment of high-strength nitrogen, nitritation has more economic advantages than nitrification. In this study, lab-scale reactor was operated at the $35^{\circ}C$, $20^{\circ}C$ and $10^{\circ}C$ conditions using effluent of anaerobic digester to investigate the nitrogen removal by nitritation. Long-term stable nitritation was achieved at the $35^{\circ}C$, $20^{\circ}C$ but $10^{\circ}C$. In the stable nitritation states, nitrite conversion was higher at the high temperature of $35^{\circ}C$ than the room temperature of $20^{\circ}C$. Also shorter solid retention time (SRT) was needed to induce high nitrite conversion at the high temperature of $35^{\circ}C$. It was showed that temperature and SRT are important factors to induce nitritation.

Evaluation of a moving bed biofilm reactor for simultaneous atrazine, carbon and nutrients removal from aquatic environments: Modeling and optimization

  • Derakhshan, Zahra;Ehrampoush, Mohammad Hassan;Mahvi, Amir Hossein;Dehghani, Mansooreh;Faramarzian, Mohammad;Ghaneian, Mohammad Taghi;Mokhtari, Mehdi;Ebrahimi, Ali Asghar;Fallahzadeh, Hossein
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.219-230
    • /
    • 2018
  • The present study examined a moving bed biofilm reactor (MBBR) bioreactor on a laboratory scale for simultaneous removal of atrazine, organic carbon, and nutrients from wastewater. The maximum removal efficiency of atrazine, chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN) were 83.57%, 90.36%, 90.74% and 87.93 respectively. Increasing salinity up to 40 g/L NaCl in influent flow could inhibit atrazine biodegradation process strongly in the MBBR reactor.Results showed that MBBR is so suitable process for efficiently biodegrading of atrazine and nitrogen removal process was based on the simultaneous nitrification-denitrification (SND) process.

A highly effective route for removal of Hg2+ from the waste water using 3-nitrobenzelidenemalononitrile as a modifier of Fe3O4@SiO2 nanoparticles

  • Mosleh Mehryar;Ghasem Marandi
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • SiO2-coated magnetic nanoparticles (Fe3O4@SiO2 NPs) were modified by 3-nitrobenzelidenmalononitrile and used as green linkages for removal of Hg2+ form the wastewater. In this research, it has been attempted to refer to the harmful effects of mercury ions for living things and how to remove such ions using very easy and practical technique. This study shows that by optimizing the test conditions, the efficiency of the removal of harmful ions such as mercury from the water contaminated with these ions can be increased. Conditions such as temperature, speed of agitation, pH of solution were tested for removal of mercury ions. The advantages of this method over other methods listed in the article are the rapid and easy nanocry synthesis. The generated and modified Fe3O4@SiO2 nanoparticles were characterized by X-ray diffraction, fourier transform infrared and scanning electron microscopy spectroscopy. The results show that the synthesized magnetic nanoparticles have the excellent performance for the removal of mercury(II) ion from the waste water.

Dynamics of Organic Matter and Inorganic Nutrients in a Over-enriched Mountain Stream due to Anthropogenic Loading (생활하수가 유입된 산지하천(대천천)의 유기물 및 무기영양염의 동태)

  • Park, Jung-Im;Kim, Young-Kyun;Chung, Mi-Hee;Song, Mi-Young;Lee, Sang-Ho;Chon, Tae-Soo;Lee, Kun-Seop
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.3
    • /
    • pp.230-239
    • /
    • 2006
  • Nutrient over-enrichment as a consequence of anthropogenic loading leads to eutrophication, which has the detrimental effects on river and stream ecosystems. To examine dynamics of factors causing cultural eutrophication in a over-licked mountain stream due to anthropogenic loading, physicochemical parameters were measured from 5 stations in the upper Daecheon stream, Busan, from January 2002 to May 2003. The five study sites were located along the stream gradient. DC1 is upper most clean site, and DC5 is located at the lowest area. Wastewater was released into the stream from just upstream of DC2 site. Water column ammonium and phosphate concentrations were higher during winter than other seasons, while water column nitrate +nitrite concentration did not show clear seasonal variation. Water column ammonium, nitrate+nitrite and phosphate concentrations were lowest at DC1 and highest at DC2 in which waste water loading occurred. TOC and DOC, conductivity, turbidity, and BOD in the water column were also increased drastically at DC2, and then decreased at DC5. Sediment pore water phosphate concentrations during winter and spring were higher than those in summer and fall, while sediment pore water ammonium and nitrate +nitrite concentrations showed no seasonal trend. Sediment pore water ammonium and phosphate concentration were also increased at DC2 and slightly decreased at DC5, while sediment pore water nitrate+nitrite concentration was highest at DC5. Organic matter and inorganic nutrients at up-stream of Daechon stream significantly increased as a result of wastewater discharge, and the nutrient concentrations decreased at low-stream suggesting self-purification ability of the stream.

Investigation on Characteristics of Swine Manure of Optimum Volume for Escalator Reversing Composting Facility (돼지분뇨 특성에 따른 기계교반 퇴비화시설의 적정용적 산정 연구)

  • Kwag, J.H.;Choi, D.Y.;Park, C.H.;Jeong, K.H.;Kim, J.H.;Yoo, Y.H.;Youn, C.K.;Ra, C.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.105-112
    • /
    • 2008
  • This study was carried out to investigate evaporation rate of moisture per surface area and degradation rate of organic matter in full scale escalator reversing composting facility were analyzed to develope a computer program for the computation of an optimum volume of composting facility according to handling methods of swine farm, moisture levels of manure, degradation rate of organics and evaporation rate of moisture during composting. The obtained results can be followed as bellow; The temperature in full scale escalator reversing composting facility during composting reached $70^{\circ}C$ in 4 days and maintained until 11 days. Reduction rate of moisture and density was average 1.20% and 29.7%, respectively. Annual degradation rate of organic matter was 3.53%, showing lowest rate in winter as 3.23%. These seasonal degradation rate could be a factor to be considered for proper management and installation of composting facility. When computed with the amount of feces, urine, slurry and manure plus wastewater produced, the optimum volumes of composting facility for slurry and manure plus wastewater including each 95% moisture was $229m^3$ and $277m^3$, respectively, showing 21% ($48m^3$) difference.

  • PDF

Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge (어드밴스드 패키징 공정에서 발생할 수 있는 슬러지의 인자 확인 및 형성 방지법의 제안)

  • Jiwon Kim;Suk Jekal;Ha-Yeong Kim;Min Sang Kim;Dong Hyun Kim;Chan-Gyo Kim;Yeon-Ryong Chu;Neunghi Lee;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • In this study, the sludge formation in the wastewater drain from the advanced packaging process mechanisms are revealed as well as the key factors, materials, and sludge prevention methods using surfactant. Compared with that of conventional packaging process, advanced packaging process employ similar process to the semiconductor fabrication process, and thus many processes may generate wastewater. In specific, a large amount of wastewater may generate during the carrier wafer bonding, photo, development, and carrier wafer debonding processes. In order to identify the key factors for the formation of sludge during the advanced packaging process, six types of chemicals including bonding glue, HMDS, photoresist (PR), PR developer, debonding cleaner, and water are utilized and mixing evaluation is assessed. As a result, it is confirmed that the black solid sludge is formed, which is originated by the sludge seed formation by hydrolysis/dehydration reaction of HMDS and sludge growth via hydrophobic-hydrophobic binding with sludge seed and PR. For the sludge prevention investigation, three surfactants of CTAB, PEG, and shampoo are mixed with the key materials of sludge, and it is confirmed that the sludge formations are successfully suppressed. The underlying mechanism behind the sludge formation is that the carbon tails of the surfactant bind to PR with hydrophobic-hydrophobic interaction and inhibit the reaction with HMDS-based slurry seeds to prevent the sludge formation. In this regard, it is expected that various problems like clogging in drains and pipes during the advanced packaging process may effectively solve by the injection of surfactants into the drains.