Dynamics of Organic Matter and Inorganic Nutrients in a Over-enriched Mountain Stream due to Anthropogenic Loading

생활하수가 유입된 산지하천(대천천)의 유기물 및 무기영양염의 동태

  • Published : 2006.09.01

Abstract

Nutrient over-enrichment as a consequence of anthropogenic loading leads to eutrophication, which has the detrimental effects on river and stream ecosystems. To examine dynamics of factors causing cultural eutrophication in a over-licked mountain stream due to anthropogenic loading, physicochemical parameters were measured from 5 stations in the upper Daecheon stream, Busan, from January 2002 to May 2003. The five study sites were located along the stream gradient. DC1 is upper most clean site, and DC5 is located at the lowest area. Wastewater was released into the stream from just upstream of DC2 site. Water column ammonium and phosphate concentrations were higher during winter than other seasons, while water column nitrate +nitrite concentration did not show clear seasonal variation. Water column ammonium, nitrate+nitrite and phosphate concentrations were lowest at DC1 and highest at DC2 in which waste water loading occurred. TOC and DOC, conductivity, turbidity, and BOD in the water column were also increased drastically at DC2, and then decreased at DC5. Sediment pore water phosphate concentrations during winter and spring were higher than those in summer and fall, while sediment pore water ammonium and nitrate +nitrite concentrations showed no seasonal trend. Sediment pore water ammonium and phosphate concentration were also increased at DC2 and slightly decreased at DC5, while sediment pore water nitrate+nitrite concentration was highest at DC5. Organic matter and inorganic nutrients at up-stream of Daechon stream significantly increased as a result of wastewater discharge, and the nutrient concentrations decreased at low-stream suggesting self-purification ability of the stream.

본 연구는 2002년 1월부터 2003년 5월까지 오염원이 비교적 단순한 산지하천에서의 무기 영양염 및 유기물 변동을 고찰하기 위해 낙동강 지류인 대천천의 상류에서 실시되었다. 조사지점은 인위적인 오염이 없는 DC1, 주위의 식당과 민가에서 생활하수가 유입되는 DC2, DC3, DC4그리고 부분적으로 수질이 자연 정화된 DC5이다. 전기전도도, 탁도, BOD는 하수의 유입으로 인하여 DC2에서 급격히 증가하였다가 DC5에서 다시 낮아졌다. 수층의 $NH_4^+$$PO_4^{3-}$농도는 갈수기인 겨울에 증가하는 경향이 보였으며, DC2에서 DC1에 비해 각각 150 배 및 37배가 증가하였다가 하류로 내려 갈수록 뚜렷하게 감소하였으며, $NO_3^-+NO_2^-$은 오염지역인 DC2, DC3, DC4와 DC5에서 청정지역인 DC1보다 약 2배 증가하였다. N/P비율은 DC1에서 가장 높았고, 하수 유입지역에서 감소하여 이들 지역에는 부영양화가 진행되고 있음을 알 수 있었다. 퇴적물 공극수의 $PO_4^{3-}$농도는 겨울과 봄에 증가하였으나, $NH_4^+$$NO_3^-+NO_2^-$의 농도는 계절 경향이 보이지 않았다. 퇴적물 공극수의 $NO_4^-,\;PO_4^{3-}$ 농도와 퇴적물의 유기물 함유량도 하수가 유입되는 DC2, DC3, DC4에서 유의하게 증가하였고, DC5에서 다소 감소하였다. 퇴적물 공극수의 $NO_3^-+NO_2^-$의 농도는 DC2에서보다 용존산소가 풍부한 DC5에서 오히려 증가하였다. 수층의 TOC와 DOC농도는 봄과 가을에 증가하였고, 하수가 유입되는 지역에서 높게 측정되었다. 조사지역이 산지하천의 상류에 위치하고 있으나 식당 및 민가에서 유입되는 생활하수는 하천의 상류를 부영양화 시켰으며, 하류로 내려오면서 유기물 및 무기 영양염의 농도가 감소하여 하천수가 자연적으로 정화되는 것이 관찰되었다.

Keywords

References

  1. 김범철, 최광순, 김철구, 이유희, 검동섭, 박제철. 1998. 소양호의 DOC와 POC의 분포. 한국육수학회지. 31:17-24
  2. 김호섭, 황순진. 2004 . 부영양 저수지에서 식물플랑크톤 성 장에 대한 제한 영양염과 질소/인 비의 영향. 한국육수학회지. 37:36-46
  3. 김현주, 윤해순, 김진수, 김현우, 주기재. 1997. 산지하천에서 빛과 초식에 의한 부착조류의 생체량변화. 한국육수학회지. 30:385-392
  4. 박홍기, 정종문, 박재렴, 홍용기. 1999. 낙동강 하류에서 식물 플랑크톤 생산력과 수질 변화의 관계. 8:101-106
  5. 서인석, 김병군, 이상일. 1998. 간헐폭기활성슬러지공정에서 C/N비와 질소제거의 관계. 대한위생학회지. 13:57-65
  6. 신재기. 1998. 낙동강 부영양화에 따른 담수조류의 생태학 적 연구. 언제대학교 박사학위 논문
  7. 신재기, 조주래, 황순진, 조경제. 2000. 경안천-팔당호의 부영 양화와 수질오염 특성. 한국육수학회지. 33:387-394
  8. 신재기, 조경제. 2000. 금강하구호에서 수질의 계절변동과 오염도. 한국육수학회지. 33: 251-259
  9. 신재기, 황순진. 2003. 평택호와 유역하천에서 조류생장잠재 력 측정. 한국육수학회지. 36:172-180
  10. 신재기, 황순진, 강창근, 검호섭. 2003. 하천형 저수지 팔당호 의 육수학적 특성 : 수문과 수환경요인. 36:242-256
  11. 심수용. 1998. 우리나라 비료와 사료에 기인하는 비점오염 원의 질소, 인 배출량. 강원대학교 이학석사논문
  12. 안광국, 신인철. 2005. 산간 계류성 하천의 계절적 수질변동 에 대한 몬순강우의 영향. 한국육수학회지. 38:54-62
  13. 오강호, 고영구. 2003. 광주광역시 하천수 수질 및 오염. 한국환경과학회지. 12:287-297
  14. 이옥재, 이일규, 박희진, 안태영. 1995. 대청호에서의 질화작 용. 한국육수학회지. 28:11-18
  15. 임창수, 신재기, 조경제. 2000. 금강중하류에서 오염양상과 수질평가. 한국육수학회지. 33:51-60
  16. 장광현, 김현우, 최상호, 김중곤, 주기재. 1999. 도시하천(양재 천) 및 산지하천 (경기도 사기막천)에서 부착규조 군집의 동태. 한국육수학회지. 32:229-237
  17. 전은주, 양한섭, 옥 곤, 김영섭. 1998. 부산지역 강우의 화학 적 특성. 한국환경과학회지. 5:707-716
  18. 조경제, 신재기. 1997. 낙동강 중.하류에서 무기 N.P 영양염변동. 한국육수학회지. 30:85-95
  19. 하 경, 박성배, 김현우, 김진수, 주기재. 1997. 부산.경상남도의 상류하천이 물리.화학적 특성과 부착조류 생체 량의 분포. 한국육수학회지. 30:393-403
  20. 환경부. 1991. 수질오염공정시험방법. 동화기술. pp.57-60
  21. Brower JE, JH Zar and von CN Ende. 1997. General Ecology. McGraw-Hill. pp.273
  22. Davies BE. 1974. Loss-on-igniyion as an estimate of soil organic matter. Proc. Soil Sci. Soc. Am. 38:150-151
  23. McKee L, E Brandley and H Shahadat. 2000. Intra- and inter-annual export of nitrogen and phosphorus in the subtropical Richimond River catchment, Australia. Hydrol. Proc. 14:1787-1809 https://doi.org/10.1002/1099-1085(200007)14:10<1787::AID-HYP42>3.0.CO;2-Z
  24. Ohte N, N Tokuchi, H Shibata, M Tsujimura, T Tanaka and MJ Mitchell. 2001. Hydrobiogeochemistry of forest ecosystems in Japan: major themes and research issues. Hydrol. Proc. 15:1771-1789 https://doi.org/10.1002/hyp.239
  25. Paul MJ and JL Meyer. 2001. Streams in the urban landscape. Ann. Rev. Ecol. Syst. 32:333-365 https://doi.org/10.1146/annurev.ecolsys.32.081501.114040
  26. Rump HH and H Krist. 1988. Laboratory manual for the examination of water. wastewater and soil. VCH Verlags-gesellschsft. New York. pp.190
  27. Wallace JB, DS Vogel and TF Cuffney. 1986. Recovery of a headwater stream from an insecticide-induced community disturbance. J. Am. Benthol. Soc. 5:115-126 https://doi.org/10.2307/1467866
  28. Wetzel RG. 2001. Limnology-Lake and River Ecosystems. 3rd ed. Academic press. pp.1006