• Title/Summary/Keyword: Organic soil

Search Result 3,692, Processing Time 0.046 seconds

Inhibitory Substance on the Snake Venoms Produced by Penicillium sp. (사독의 조해물질에 관한 연구)

  • Seu, Jung-Hwn;Yi, Dong-Heui
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.2
    • /
    • pp.75-89
    • /
    • 1979
  • One strain of Penicillium sp. (175-66-B), isolated from soil, was able to produce a substance that has a strong inibition activity against the Agkistrodon and Trimeresurus venoms. In this experiment, the chemical and biological properties of the sample were investigated. As an inhibitory substance, it was effective to the proteinase, hemorrhagic and lethal factors of Agkistrodon and Trimeresurus venoms, and also effective to several fractions of the proteinases and hemorrhagic factors of Agkistrodon halys blomhoffi venom. Moreover, in the addition of prednisotone, it was more effective for the cure of the mouse envenomated with the venom amount of two fold of MLD$_{100}$. This substance was very stable to the acid, alkali and heat. Its melting point was high enough to sublime at 222$^{\circ}C$ without any decomposition. This sample was easily dissolved only in hot water, but not in several organic solvents except for a little dissolution in elate. It did not have the chelating activity. It had very strong specificity to the snake venoms. but its activity was depressed by the addition of zinc or cupric salts. This sample had no acute toxicity to the mouse. Its chemical formula was $C_{16}$ $H_{12}$$N_2$ $O_{10}$ with the molecular weight of about 392. It has two epoxy groups and four carboxyl radicals, but amino, nitrite and nitrate radicals, unsaturated bonds and aromatic ring were not detected. Theuchemical configuration of this sample was suggested to be;

  • PDF

Effects and Improvement of Carbon Reduction by Greenspace Establishment in Riparian Zones (수변구역 조성녹지의 탄소저감 효과 및 증진방안)

  • Jo, Hyun-Kil;Park, Hye-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.16-24
    • /
    • 2015
  • This study quantified storage and annual uptake of carbon for riparian greenspaces established in watersheds of four major rivers in South Korea and explored desirable strategies to improve carbon reduction effects of riparian greenspaces. Greenspace structure and planting technique in the 40 study sites sampled were represented by single-layered planting of small trees in low density, with stem diameter at breast height of $6.9{\pm}0.2cm$ and planting density of $10.4{\pm}0.8trees/100m^2$ on average. Storage and annual uptake of carbon per unit area by planted trees averaged $8.2{\pm}0.5t/ha$ and $1.7{\pm}0.1t/ha/yr$, respectively, increasing as planting density got higher. Mean organic matter and carbon storage in soils were $1.4{\pm}0.1%$ and $26.4{\pm}1.5t/ha$, respectively. Planted trees and soils per ha stored the amount of carbon emitted from gasoline consumption of about 61 kL, and the trees per ha annually offset carbon emissions from gasoline use of about 3 kL. These carbon reduction effects are associated with tree growth over five years to fewer than 10 years after planting, and predicted to become much greater as the planted trees grow. This study simulated changes in annual carbon uptake by tree growth over future 30 years for typical planting models selected as different from the planting technique in the study sites. The simulation revealed that cumulative annual carbon uptake for a multilayered and grouped ecological planting model with both larger tree size and higher planting density was approximately 1.9 times greater 10 years after planting and 1.5 times greater 30 years after than that in the study sites. Strategies to improve carbon reduction effects of riparian greenspaces suggest multilayered and grouped planting mixed with relatively large trees, middle/high density planting of native species mixed with fast-growing trees, and securing the soil environment favorable for normal growth of planting tree species. The research findings are expected to be useful as practical guidelines to improve the role of a carbon uptake source, in addition to water quality conservation and wildlife inhabitation, in implementing riparian greenspace projects under the beginning stage.

Changes of General Components and Aromatic Constituents in Codonopsis lanceolata Grown at The Native and Cultivated Area (재배장소에 따른 더덕의 일반성분과 향기성분의 조성변화)

  • 이승필
    • Korean Journal of Plant Resources
    • /
    • v.9 no.3
    • /
    • pp.230-238
    • /
    • 1996
  • The experiment was carried out to find aromatic constituent composition of Codonopsis lanceolata species grown in the native(Mt. lrwol, Youngyang, Kyungpuk Province) and the cultivated(Andong, Kyungpuk Province) areas from 1994 to 1995. The results were as follows : Air temperature and soil temperature at the native area were lower to $2{\sim}3^{\circ}C$, and to $2^{\circ}C$ than the cultivated area. Organic matter contents of plant grown at the native area higher than that of plants at the cultivated area by 4.8%. Crude protein content was higher in plant grown at native area than the plant grown in wild area but in case of crude saponin, plants grown at wild area was higher than that of native area. For inorganic element contents. K content is much higher than in the domesticated area as compared with wild area above ten over. And other elements such as Cu, Mn, Na and Mg were not remarkably different in contents. In the free amino acid compositions, argine was highest compared with other free amino acids, and Arginine content was higher in dometicated area. Recovery yield of essential oil of wild species grown at the cultivated showed 0.005%, but domesticated species was 0.004%. But both species at the native area were the same by 0.004%. Although composition of aromatic constituents in the two areas and species varied, total aromatic constituent was 21 kinds. Most aromatic constituents were aliphatic alcohols such as 1-hexanol, eis-3-hexanol, and trans-2-hexanol occupied by approximately 90% over. But three constituets as amylalcohol, furfuryl acetate, and 2-methoxy-4-vinyl phenol(MVP) were detected only in domesticated species.

  • PDF

Environmental Survey on the Cultivation Ground in the West Coast of Korea (서해연안의 양식장 환경조사 3. 부안 백합 양식장 환경)

  • LEE Jeong-Yeol;KIM Young-Gill
    • Journal of Aquaculture
    • /
    • v.4 no.2
    • /
    • pp.111-128
    • /
    • 1991
  • In puan area the environmental surveys were carried out at two farms of hard clam, Meretrix lusoria from April 1987 to November 1978 in order to know heather the farm environments could be rehabilitated for the cultivation of hard clam or not. The range of temperature of surface seawater was $10.7{\~}27.4^{\circ}C$, pH $7.6{\~}8.2$, salinity $22.3{\~}30.3$ ppt, COD $0.20{\~}4.71\;mg/{\ell}$, sulfide $0.04{\~}0.22\;{\mu}g-at./{\ell}$, suspended solid $34.8{\~}199.3\;mg/{\ell}$ chlorophyll a $3.71{\~}49.02\;mg/m^3$, TIN $2.01{\~}24.47\;{\mu}g-a5./{\ell}$, phosphate $0.60{\~}11.03\;{\mu}g-at./{\ell}$ and silicate $4.04{\~}476.36\;{\mu}g-at./{\ell}$. The range of temperature of substratum (bottom soil) was $14.2{\~}29.7^{\circ}C$, pH $8.3{\~}9.5$, water content of substratum was $0.28{\~}0.49\;mg/g$ dried mud, COD $2.80{\~}50.94\;mg/g$ dried mud, total organic matter $1.05{\~}1.97\%$ concentration of total Kjedhal nitrogen $31.9{\~}194.9\;{\mu}g./{\ell}$ dried mud, and sulfide $0.032{\~}0.133\;mg/g$ dried mud. Fine sand was dominant ranging over $92{\~}95\%$ and silt and clay was $2.8{\~}8.1\%$ of the composition of substratum. Some residual agricultural chemicals, ${\alpha},\;{\beta},\;{\gamma}$-BHC, heptachlor, heptachlor-epoxide, aldrin, DDE, DDT and dieldrin were detected in hard clams collected from Puan areas. Especialy, more chemical were detected during the period of rainfalls. From above results, it is considered that the hard clam frams were not yet recovered from deteriorated conditions for aquaculture.

  • PDF

Review of Production, Husbandry and Sustainability of Free-range Pig Production Systems

  • Miao, Z.H.;Glatz, P.C.;Ru, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1615-1634
    • /
    • 2004
  • A review was undertaken to obtain information on the sustainability of pig free-range production systems including the management, performance and health of pigs in the system. Modern outdoor rearing systems requires simple portable and flexible housing with low cost fencing. Local pig breeds and outdoor-adapted breeds for certain environment are generally more suitable for free-range systems. Free-range farms should be located in a low rainfall area and paddocks should be relatively flat, with light topsoil overlying free-draining subsoil with the absence of sharp stones that can cause foot damage. Huts or shelters are crucial for protecting pigs from direct sun burn and heat stress, especially when shade from trees and other facilities is not available. Pigs commonly graze on strip pastures and are rotated between paddocks. The zones of thermal comfort for the sow and piglet differ markedly; between 12-22$^{\circ}C$ for the sow and 30-37$^{\circ}C$ for piglets. Offering wallows for free-range pigs meets their behavioural requirements, and also overcomes the effects of high ambient temperatures on feed intake. Pigs can increase their evaporative heat loss via an increase in the proportion of wet skin by using a wallow, or through water drips and spray. Mud from wallows can also coat the skin of pigs, preventing sunburn. Under grazing conditions, it is difficult to control the fibre intake of pigs although a high energy, low fibre diet can be used. In some countries outdoor sows are fitted with nose rings to prevent them from uprooting the grass. This reduces nutrient leaching of the land due to less rooting. In general, free-range pigs have a higher mortality compared to intensively housed pigs. Many factors can contribute to the death of the piglet including crushing, disease, heat stress and poor nutrition. With successful management, free-range pigs can have similar production to door pigs, although the growth rate of the litters is affected by season. Piglets grow quicker indoors during the cold season compared to outdoor systems. Pigs reared outdoors show calmer behaviour. Aggressive interactions during feeding are lower compared to indoor pigs while outdoor sows are more active than indoor sows. Outdoor pigs have a higher parasite burden, which increases the nutrient requirement for maintenance and reduces their feed utilization efficiency. Parasite infections in free-range pigs also risks the image of free-range pork as a clean and safe product. Diseases can be controlled to a certain degree by grazing management. Frequent rotation is required although most farmers are keeping their pigs for a longer period before rotating. The concept of using pasture species to minimise nematode infections in grazing pigs looks promising. Plants that can be grown locally and used as part of the normal feeding regime are most likely to be acceptable to farmers, particularly organic farmers. However, one of the key concerns from the public for free-range pig production system is the impact on the environment. In the past, the pigs were held in the same paddock at a high stocking rate, which resulted in damage to the vegetation, nutrient loading in the soil, nitrate leaching and gas emission. To avoid this, outdoor pigs should be integrated in the cropping pasture system, the stock should be mobile and stocking rate related to the amount of feed given to the animals.

Mechanisms of Cold Injury and Cultural Practices for Reducing Damage of Rice (벼 냉해발성 기작과 피해 경감대책)

  • Lee, Moon-Hee;Park, Nam-Kyu;Park, Suk-Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.34-44
    • /
    • 1989
  • The stability of rice cultivation in Korea is largely depended on climatic conditions, especially, low temperature at the period of early growth stage and after heading. The improvement of cold tolerant varieties and appropriate cultural practices in rice are very effective to minimize the cold damage. This paper is summarized the mechanism and counterplans of cold injury of rice plants. The paddy area having commonly cold injury in Korea is approximately 15, 522ha in 1,709 sites on the national scale. The cold damage at seedling stage in nursery bed appeared to poor germination, leaf discoloration, dead seedlings and seedling rot ect.. At the vegetative stage, the decreased tiller number due to poor rooting and the delayed heading caused by slow growth and panicle differentiation are commonly showed. The cold injury at early reproductive stage appeared to the degeneration of spikelets and rachis - branches, while that at meiosis stage showed to increased sterility due to poor development of pollen and shortened panicle length with delaying heading, therefore the grain yield is largely decreased. The cold damage at heading and ripening stages showed to poor pollination and fertilization, low panicle exsertion, poor grain filling and finally grain quality became low. To minimize the cold injury to rice plants by low temperature, following counterplans would be recommonded ; Improvement of the cold toelrant rice varieties for the regions of midmountains and alpines. Raising healthy seedlings at upland nursery beds and by using of growth regulators such as ABA, Fuchiwang and Tachiace. Soil improvement and organic matter application to reduce cold damage by increasing water and fertilizer holding capacities in the paddy field having commonly cold water and in the place where cold damage is regularly occurred. Appropriate fertilization for raising healthy rice plants to tolerate under low temperature condition. Water management to increase water temperature in the paddy such as depth watering, round channels and polyethylene tubes around the field. Establishment of the optimum cultivation time of rice based on minimum, mean and maximum temperatures at different regions with appropriate rice varieties.

  • PDF

Effect of Rice Bran and Barley Bran Application on Growth and Yield of Chinese Chive (Allium tuberosum Rottler) and Taro (Colocasia esculenta) and Weed Control (쌀겨, 보릿겨 처리가 부추와 토란의 생육과 수량 및 잡초방제에 미치는 영향)

  • Ryu, Deok-Kyo;Yun, Young-Beom;Kwon, Oh-Do;Shin, Dong-Young;Hyun, Kyu-Hwan;Lee, Do-Jin;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.260-270
    • /
    • 2011
  • This study was carried out to examine the effect of rice bran, barley bran, burned rice bran, and burned barley bran on the growth and yield of Chinese chive (Allium tuberosum Rottler), taro (Colocasia esculenta), and weed control. When the above 4 brans were examined 13, 27, 41 and 57 days respectively after application, the plant height of Chinese chive applied with burned barley bran was significantly higher than non-treated control, whereas the other brans did not have any distinct effect on the plant height or population number of Chinese chive. However, when examined 57 days after the application of the above 4 brans, all the plants applied with brans showed more than twice the improvement in shoot fresh weight compared with non-treated control. A chemical analysis of soil 57 days after the application of the above 4 brans showed that the soils were richer in available phosphate and organic matter. Shoot fresh weight of Chinese chive at 2 weeks after cutting was significantly higher in barely bran treated plot than in non-treated plot. In the case of taro, only taro plots transplanted when 10 cm tall and applied with barley bran showed an improvement in growth increment of both the underground and above parts. However, when sowed seeds after the application of the 4 brans, the yield of taro was reduced by the brans. Thus this research indicates that the effect of brans is differ based on the amount of bran application as well as crops. The effect of weed control on Echinochloa crus-galli, Digitaria clliaris, Chenopodium album, and Solanum nigrum as affected by brans was very low in pot conditions. Weed efficacy of the brans was also very low in field conditions. Growth of Chinese cabbage and garland chrysanthemum was inhibited 63% and 37% by rice bran at $4,000kg\;ha^{-1}$, respectively, but other crops such as maize, squash, cucumber, and Chinese chive were inhibited by 0-20%. These results were similar to that of barley bran except for Chinese cabbage.

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area (대전지역 도심하천의 수리화학적 및 동위원소적 특성)

  • Jeong, Chan-Ho;Moon, Byung-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.315-333
    • /
    • 2009
  • In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

Studies on Cropping System for Year-Round Cultivation of Forage Crops in Gyeongnam Province (경남지방에서 조사료 주년생산 작부체계에 관한 연구)

  • Kang, Dal-Soon;Kim, Dae-Ho;Shin, Hyun-Yul;Son, Gil-Man;Rho, Chi-Woong;Kim, Jung-Gon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.2
    • /
    • pp.137-152
    • /
    • 2009
  • Present experiment was conducted at the field of Gyeongnam Agricultural Research and Extension Services in Jinju city for two continuous cropping seasons to develop several adaptable and valuable year-round forage-producing system for elevating self-sufficiency and dollar-saving by reduced importing of crude forage. Twenty cropping systems were tested in experiment using whole crop barley (WCB), oat, rye, Italian ryegrass (IRG), and triticale in winter season and com, sorghum, sorghum ${\times}$ sudangrass hybrid, and oat in summer time. Sorghum ${\times}$ sudangrass hybrid showed highest fresh forage yield among experimented summer season crops, and followed com. Com produced the most dry matter yield, and followed sorghum${\times}$sudangrass hybrid, sorghum and oat in order. There was no significant effect of former winter crops on fresh and dry matter production succeeding summer time crops. Among winter season forage crops tested, oat showed the highest fresh and dry matter when clipped on mid-May, and followed triticale, IRG, rye and WCB. Winter-time cultivated crops showed no clear effect on the growth and forage (fresh and dry matter) producing ability of following summer crops. There was the most protein content in oat plant among summer season planted crops, and in sorghum for acid detergent fiber (ADF) and in sorghum ${\times}$ sudangrass hybrid for neutral detergent fiber (NDF), respectively. While, com showed highest value of relative feed value (RFV) and total digestive nutrients (TDN) among those crops. Among winter crops, the highest crude protein was in oat plant showing no significant differences of ADF and NDF, while, relatively higher value of RFV was recognized with rye and triticale. Also, triticale contained more TDN as compare to other forage crops. The cropping combinations such as com followed by (fb) rye and maize fb triticale were regarded as promising systems having higher dry matter producing ability among tested combinations. Considering TDN producing potential, the combinations with sorghum ${\times}$ sudangrass hybrid fb triticale andlor rye were would be suitable ones, coincidently. There was a tendency which elevating pH, electric conductivity (EC) and organic matter (OM) contents in soil after experiment comparing to before planting. More crude protein content in plant was shown at mid-May clipping as compared to the forage at April cut in all winter season grown crops. ADF and NDF contents were increased by delayed clipping showing decreased tendency of RFV and TDN in plant. In conclusion, many cropping systems would be available using above mentioned forage crops according to farmer's conditions and scale, etc.