• Title/Summary/Keyword: Organic material removal

Search Result 182, Processing Time 0.024 seconds

SAPS의 탄소원 공급을 위한 유기물 연구

  • 이지은;고주인;김선준;유상희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.231-234
    • /
    • 2004
  • The experiments on some organic materials used in SAPS are carried out for the better sulfate reduction efficiency and the longer lifetime. Organic materials include spent mushroom compost, sewage sludge, oak chip compost and the combination of there. Reactors with mushroom compost, sewage sludge, the mixture of mushroom compost and sewage sludge, and the mixture of mushroom compost and oak chip compost maintained pH higher than 6.0. Reactors with mushroom compost, the mixture of mushroom compost and sewage sludge, and the mixture of mushroom compost and oak chip compost maintained reduction condition. Reactors with sewage sludge, oak chip compost and the mixture of sewage and oak chip compost produced COD less than 2,000ppm. Reactors with sewage and the mixture of mushroom compost, sewage sludge, oak chip compost showed about 60% of sulfate removal ratios.

  • PDF

Treatment of Dyeing Wastewater by Flocculation with Calsium and Magnesium salts (칼슘과 마그네슘염을 이용한 염색폐수의 응집처리)

  • 김재용;서완주
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.89-98
    • /
    • 2002
  • The changes of conventional clarification process and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. The removal of waste matters such as SS, organic matter, color and turbidity contained in dyeing wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 84% of color in dyeing watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.

Treatment of stock wastewater by flocculation with Calsium and Magnesium salts (칼슘과 마그네슘염을 이용한 축산폐수의 응집처리)

  • 김재용
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.10-18
    • /
    • 2002
  • The changes of conventional clarification processe and an increase in treatment cost are required to meet increasingly stringent regulations related to the treated water quality. Although many enhanced coagulations have introduced to improve organic matter removal, the results to remove color, nitrogen and phosphorus as well as organic material have not been very efficient yet. In this context as new flocculation using calcium hydroxide and magnesum sulfate was carried out. The removal of waste matters such as SS, organic matter, COD, nitrogen and phosphorus contained in stock wastewater was carried out by using the combination of calcium hydroxide and magnesium sulfate. The flocculation was investigated as a function of coagulant dose, pH, mixing time, settling time and coagulant addition modes such as the sequential addition of the two coagulants and the simultaneous addition of them. The flocculation by the combination of calcium hydroxide and magnesium sulfate was compared with that by aluminum sulfate. The mechanism of flocculation was investigated as well. About 60% of COD in stock watewater was removed by flocculation with combination of calcium hydroxide and magnesium sulfate.

Characterization of Natural Organic matter by Rapid Mixing Condition (급속교반조건에서 Alum 응집제의 가수분해종 분포특성과 유기물특성변화)

  • Song, Yu-Kyung;Jung, Chul-Woo;Son, Hee-Jong;Sohn, In-Shik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.559-571
    • /
    • 2006
  • The overall objective of this research was to find out the interrelation of coagulant and organic matter during rapid mixing process and to identify the change of organic matter by mixing condition and to evaluate the effect of coagulation pH. During the coagulation, substantial changes in dissolved organics must be occurred by coagulation due to the simultaneous formation of microflocs and NOM precipitates. Increase in the organic removal efficiency should be mainly caused by the removal of microflocs formed during coagulant injection. That is, during the mixing period, substantial amount of dissolved organics were transformed into microflocs due to the simultaneous formation of microflocs and NOM precipitates. The results also showed that 40 to 80% of dissolved organic matter was converted into particulate material after rapid mixing process of coagulation. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) constant by rapid mixing condition, but for raw water, the species of Al hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. At A/D(Adsorption and Destabilization) and sweep condition, both $Al(OH)_3(s)$ and dissolved Al(III) (monomer and polymer) exist, concurrent reactions by both mechanism appear to cause simultaneous precipitation.

A study of dissolving treatment of covered material on metal surface (금속표면 피복물질의 분해처리에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.112-119
    • /
    • 2005
  • This study reports on the efficiency of cleaning enameled magnet wire using a sulfuric acid $H_2SO_4$ and removal of dissolved organic material using hydrogen peroxide $H_2O_2$ and nitric acid $HNO_3$ at $80^{\circ}C$. The method involves the addition of pure $H_2SO_4$ and $H_2O_2$ or $HNO_3$. Layers of enameled organic material were dissolved by 90% $H_2SO_4$ and the solution was maintained as 35% $H_2O_2$ or 60% $HNO_3$. $H_2O_2$ content in aqueous $H_2O_2$ was maintained as 8.8 : 1.0. An initial concentration of $H_2SO_4$ in dissolution conditions was accomplished within 15 min, with a stripping time of about 2 h. The concentrations of $H_2O_2$ and $HNO_3$ in the processing bath were relatively low, but sufficient enough to produce an effective amount of power in the bath for the removal of the enamel material. The cleaning effect of enameled organic material involves the dehydration by $H_2SO_4$ and the oxidation by $H_2O_2$ or $HNO_3$.

Removal of Odor and THM from the Raw Water of Daecheong Dam (대청호 원수내 냄새 및 THM 제거방안 연구)

  • Jeon, Hang-Bae;Yun, Gi-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.235-245
    • /
    • 1997
  • A pilot scale study for removing odor and trihalomethane formation potential (THMFP) was investigated in the standard water treatment plant equipped with ozone oxidation and granular activated carbon (GAC) adsorption processes. The removal efficiency of dissolved organic carbon (DOC) in the pilot scale standard water treatment process (PSWTP) was about 25%, however, no more removal in the ozone oxidation process. On a GAC after 30 days operation, DOC removal efficiency was about 75%. Odor removal efficiency was about 30% in PSWTP, 60% in ozone oxidation, and almost complete in well as DOC. Mid-1 and 2 that showed breakthrough in odor inducing material as well as DOC. Mid-1 and 2 chlorination was able to reduce trihalomethanes (THM) by 25% compared to prechloringation, while postchlorination alone could reduce them by 30%.

  • PDF

Adsorptive Removal of Phosphate Ions from Aqueous Solutions using Zirconium Fumarate

  • Rallapalli, Phani B.S.;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.495-501
    • /
    • 2020
  • In this study, zirconium fumarate of metal-organic framework (MOF-801) was solvothermally synthesized at 130 ℃ and characterized through powder X-ray diffraction (PXRD) analyses and porosity measurements from N2 sorption isotherms at 77 K. The ability of MOF-801 to act as an adsorbent for the phosphate removal from aqueous solutions at 25 ℃ was investigated. The phosphate removal efficiency (PRE) obtained by 0.05 g/L adsorbent dose at an initial phosphate concentration of 60 ppm after 3 h was 72.47%, whereas at 5 and 20 ppm, the PRE was determined to be 100% and 89.88%, respectively, after 30 min for the same adsorbent dose. Brunauer-Emmett-Teller (BET) surface area and pore volume of the bare MOF-801 sample were 478.25 ㎡/g and 0.52 ㎤/g, respectively, whereas after phosphate adsorption (at an initial concentration of 60 ppm, 3 h), the BET surface area and pore volume were reduced to 331.66 ㎡/g and 0.39 ㎤/g, respectively. The experimental data of kinetic (measured at initial concentrations of 5, 20 and 60 ppm) and isotherm measurements followed the pseudo-second-order kinetic equation and the Freundlich isotherm model, respectively. This study demonstrates that MOF-801 is a promising material for the removal of phosphate from aqueous solutions.

미세조류의 Methane 발효특성

  • 강창민;최명락
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.597-603
    • /
    • 1996
  • This study was carried out to examine degradation characteristics of microalgae Chlorella vulgaris in methane fermentation. We measured COD and VS reduction, gas and methane productivity, VFA (volatile fatty acid), respectively. Then we calculated material balance and hydrolysis rates in soluble and solid material. The substrate concentration was controlled from 14 gCOD$_{cr}$/l to 64 gCOD$_{cr}$/l in batch cultures, and HRT (hydraulic retention time) controlled from 2 days to 30 days in continuous experi- ments. The results were as follows. In batch culture, accumulated gas productivity increased with the increase of the substrate concentration. The SS and VSS was removed all about 30% increase of substrate concentration and the most of the degradable material removed during the first 10 days. The curve of gas and methane production rate straightly increased until substrate concentration is 26 gCOD$_{cr}$/l. In continuous culture experiments, the removal rates at HRT 10days were 20% for total COD and TOC, respectively. At longer HRT, there was no increase in the removal efficiency. At HRT 15 days, the removal rates were 30% for SS and VSS, respectively. Soluble organic materials were rapidly degraded, and so there was no accumulated. Soluble COD concentration was not increase regardless of HRT-increasing. That meaned the hydrolysis was one of the rate-limiting stage of methane fermentation. The first-order rate constants of hydrolysis were 0.23-0.28 day$^{-1}$ for VSS, and 0.07-0.08 day$^{-1}$ for COD.

  • PDF

Investigation of PEG(polyethyleneglycol) Removal Mechanism during UV/O2 Gas Phase Cleaning for Silicon Technology (UV/O2 가스상 세정을 이용한 실리콘 웨이퍼상의 PEG 반응기구의 관찰)

  • Kwon, Sung-Ku;Kim, Do-Hyun;Kim, Ki-Dong;Lee, Seung-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.985-993
    • /
    • 2006
  • An experiment to find out the removal mechanism of PEG(polyethyleneglycol) by using UV-enhanced $O_2$ GPC (gas phase cleaning) at low substrate temperature below $200^{\circ}C$ was executed under various process conditions, such as substrate temperature, UV exposure, and $O_2$ gas. The possibility of using $UV/O_2$ GPC as a low-temperature in-situ cleaning tool for organic removal was confirmed by the removal of a PEG film with a thickness of about 200 nm within 150 sec at a substrate temperature of $200^{\circ}C$. Synergistic effects by combining photo-dissociation and photo oxidation can only remove the entire PEG film without residues within experimental splits. In $UV/O_2$ GPC with substrate temperatures higher than the glass transition temperature, the substantial increase in the PEG removal rate can be explained by surface-wave formation. The photo-dissociation of PEG film by UV exposure results in the formation of end aldehyde by dissociation of back-bone chain and direct decomposition of light molecules. The role of oxygen is forming peroxide radicals and/or terminating the dis-proportionation reaction by forming peroxide.

Package of RBC/AFBR process for small-scale Piggery Wastewater Treatment (소규모 축산폐수 처리를 위한 RBC/AFBR공정의 Package화)

  • 임재명;권재혁;류재근
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 1996
  • Using rotating biological contactor(RBC) with artificial endogenous stage and aerobic fixed biofilm reactor(AFBR), organic material removal and biological nitrification of piggery wastewater has been studied at a pilot plant. RBC was operated in the endogenous phase at a interval of every 25 days. The concentration of COD, BOD and TKN in influent wastewater were from 2,940 to 3,800 mg/L, from 1,190 to 1,850 mg/L and from 486 to 754 mg/L respectively. The maximum active biomass content represented as VSS per unit aera was $2.0mg/cm$^{2}$ and biofilm dry density of $17mg/cm^{3}$ was observed at biofilm thickness of $900{\;}{\mu}m$. It was observed that the pilot scale RBC/AFBR process exhibited 72 percentage to 93 percentage of BOD removal, In order to obtain more than 90 percentage of BOD removal, the organic loading rate to the RBC/AFBR process should be maintained less than $0.09{\;}m^{3}/m^{2}{\cdot}day(125.9g{;\}BOD/m^{3}{\cdot}d$. The TKN removal efficiencies was from 45.5 to 90.9 percentage according to vary influent loading rate, It was estimated that the RBC/AFBR process consumed approximately 6.2 mg/L(as $CaCO_{3}$) of alkalinity per 1 mg/L of $NH_{3}$-N oxidized as the nitrification took piace.

  • PDF