• Title/Summary/Keyword: Organic functional groups

Search Result 225, Processing Time 0.025 seconds

Polycyclic Aromatic Hydrocarbon (PAH) Binding to Dissolved Humic Substances (HS): Size Exclusion Effect

  • Hur, Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2004
  • Binding mechanisms of polycyclic aromatic hydrocarbons (PAHs) with a purified Aldrich humic acid (PAHA) and its ultrafiltration (UF) size fractions were investigated. Organic carbon normalized binding coefficient ($K_oc$) values were estimated by both a conventional Stern-Volmer fluorescence quenching technique and a modified fluorescence quenching method. Pyrene $K_oc$ values depended on PAHA concentration as well as freely dissolved pyrene concentration. Such nonlinear sorption-type behaviors suggested the existence of specific interactions. Smaller molecular size PAH (naphthalene) exhibited higher $K_oc$ value with medium-size PAHA UF fractions whereas larger size PAH (pyrene) had higher extent of binding with larger PAHA UF fractions. The inconsistent observation for naphthalene versus pyrene was well explained by size exclusion effect, one of the previously suggested specific mechanisms for PAH binding. In general, the extent of pyrene binding increased with lower pH likely due to the neutralization of acidic functional groups in HS and the subsequent increase in hydrophobic HS region. However, pyrene $K_oc$ results with a large UF fraction (>100K Da) corroborated the existence of the size exclusion effect as demonstrated by an increase in $K_oc$ values at a certain higher pH range. The size exclusion effect appears to be effective only for the specific conditions (HS size or pH) that render HS hole st겨ctures to fit a target PAH.

A Study on the Blue Fluorescence Characteristics of Silica Nanoparticles with Different Particle Size (실리카 나노 입자의 크기에 따른 청색 형광 특성 연구)

  • Yoon, Ji-Hui;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.1-6
    • /
    • 2019
  • Organic dye-doped silica nanoparticles are used as a promising nanomaterials for bio-labeling, bio-imaging and bio-sensing. Fluorescent silica nanoparticles(NPs) have been synthesized by the modified $St{\ddot{o}}ber$ method. In this study, dye-free fluorescent silica NPs of various sized were synthesized by Sol-Gel process as the modified $St{\ddot{o}}ber$ method. The functional material of APTES((3-aminopropyl)triethoxysilane) was added as an additive during the Sol-Gel process. The as-synthesized silica NPs were calcined at $400^{\circ}C$ for 2 hours. The surface morphology and particle size of the as-synthesized silica NPs were characterized by field-emission scanning electron microscopy. The fluorescent characteristics of the as-synthesized silica NPs was confirmed by UV lamp irradiation of 365 nm wavelength. The photoluminescence (PL) of the as-synthesized silica NPs with different size was analyzed by fluorometry. As the results, the as-synthesized silica NPs exhibits same blue fluorescent characteristics for different NPs size. Especially, as increased of the silica NPs size, the intensity of PL was decreased. The blue fluorescence of dye-free silica NPs was attributed to linkage of $NH_2$ groups of the APTES layer and oxygen-related defects in the silica matrix skeleton.

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

Effect of Dietary Mogchotan Supplementation on Fattening Performance, Fatty acid Composition and Meat Quality in Pigs (사료내 목초탄 첨가가 비육돈의 비육능력, 지방산 조성 및 육질에 미치는 영향)

  • Kim, Jong-Min;Ahn, Byoung-Jun;Jo, Tae-Su;Cho, Sung-Taek;Choi, Don-Ha;Hwang, Sung-Gu
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.4
    • /
    • pp.401-412
    • /
    • 2005
  • This study was conducted to examine the effects of dietary Mogchotan(the mixture of charcoal and pyroligneous acid, 80:20, w/w) supplementation on fattening performance, fatty acid composition and the physico-chemical characteristics of meat in pigs. The present study was also stressed to investigate the possibility of industrial utilization of charcoal and pyroligneous acid as a livestock feed additive. Weight gain and feed conversion in pigs fed the Mogchotan supplemented diet were higher than those of the control group. In fatty acids composition, palmitic acid(C16:0) contents of Mogchotan treatment groups were lower than that of control group. However, Mogchotan supplementation increased C16:1, C18:0, C18:1, C18:2 and C18:3 contents when compared with control group pigs. Also, Mogchotan supplementation groups decreased saturated fatty acids level than control group. On the other hand, Mogchotan supplementation showed higher unsaturated fatty acids value, especially polyunsaturated fatty acids value compared to control group. The carcass pH of pigs fed the Mogchotan tended to be higher than control, but was not significantly different. The water holding capacity was significantly higher in pigs fed the 3.0% Mogchotan-supplemented diet than those of other treatment groups(p<0.05). Altogether, it has been suggested that dietary $1{\sim}3%$ of Mogchotan supplementation improved the fattening performance and meat quality in pigs.

  • PDF

Biogeochemical Studies on Tidal Flats in the Kyunggi Bay: Introduction (경기만 부근 갯벌의 생지화학적 연구: 서문)

  • Cho, B.C.;Choi, J.K.;Lee, T.S.;An, S.;Hyun, J.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Tidal flats have been regarded to carry out transformation and removal of land-derived organic matter, and this purifying capability of organic matter by tidal flats is one of very important reasons for their conservation. However, integral biogeochemical studies on production and decomposition of organic matter by benthic microbes in tidal flats have been absent in Korea, although the information is indispensable to quantification of the purifying capability. Our major goals in this multidisciplinary research were to understand major biogeochemical processes and rates mediated by diverse groups of microbes dominating material cycles in the tidal flats, and to assess the contribution of benthic microbes to removal of organic matter and nutrients in the tidal flats. Our study sites were Ganghwa and Incheon north-port tidal flats that had been regarded as naturally well reserved and organically polluted, respectively. Our research group measured over 3 years primary production, biomass and community structure of primary producers, abundance and production of bacteria, enzyme activities, distribution of protozoa and protozoan grazing rates, rates of denitrification and sulfate reduction, early sediment diagenesis, primary production and respiration based on oxygen microelectrode. We analyzed major features of each biogeochemical process and their interactions. The results are compiled in the following articles in this special issue: An (2005), Hwang and Cho (2005), Mok et at. (2005), Na and Lee (2005), Yang et at. (2005), and Yoo and Choi (2005).

Study on the Behavior of Colloidal Hematite: Effects of Ionic Composition and Strength and Natural Organic Matter in Aqueous Environments (교질상 적철석의 거동 특성: 수환경 내 이온 조성 및 세기, 자연 유기물이 미치는 영향)

  • Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.347-362
    • /
    • 2020
  • Iron (hydro)oxides in aqueous environments are primarily formed due to mining activities, and they are known to be typical colloidal particles disturbing surrounding environments. Among them, hematites are widespread in surface environments, and their behavior is controlled by diverse factors in aqueous environments. This study was conducted to elucidate the effect of environmental factors, such as ionic composition and strength, pH, and natural organic matter (NOM) on the behavior of colloidal hematite particles. In particular, two analytical methods, such as dynamic light scattering (DLS) and single-particle ICP-MS (spICP-MS), were compared to quantify and characterize the behavior of colloidal hematites. According to the variation of ionic composition and strength, the aggregation/dispersion characteristics of the hematite particles were affected as a result of the change in the thickness of the diffuse double layer as well as the total force of electrostatic repulsion and van der Walls attraction. Besides, the more dispersed the particles were, the farther away the aqueous pH was from their point of zero charge (PZC). The results indicate that the electrostatic and steric (structural) stabilization of the particles was enhanced by the functional groups of the natural organic matter, such as carboxyl and phenolic, as the NOM coated the surface of colloidal hematite particles in aqueous environments. Furthermore, such coating effects seemed to increase with decreasing molar mass of NOM. On the contrary, these stabilization (dispersion) effects of NOM were much more diminished by divalent cations such as Ca2+ than monovalent ones (Na+), and it could be attributed to the fact that the former acted as bridges much more strongly between the NOM-coated hematite particles than the latter because of the relatively larger ionic potential of the former. Consequently, it was quantitatively confirmed that the behavior of colloidal hematites in aqueous environments was significantly affected by diverse factors, such as ionic composition and strength, pH, and NOM. Among them, the NOM seemed to be the primary and dominant one controlling the behavior of hematite colloids. Meanwhile, the results of the comparative study on DLS and spICPMS suggest that the analyses combining both methods are likely to improve the effectiveness on the quantitative characterization of colloidal behavior in aqueous environments because they showed different strengths: the main advantage of the DLS method is the speed and ease of the operation, while the outstanding merit of the spICP-MS are to consider the shape of particles and the type of aggregation.

Removal of Cu(II) with the Recycled Hydroxylapatite from Animal Bones (동물뼈로부터 재활용된 hydroxylapatite를 이용한 Cu(II) 제거)

  • Kim, Mu-Nui;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.735-742
    • /
    • 2009
  • The bone of spinal animals has a hydroxylapatite ($Ca_{10}(PO_4)_6(OH)_2$, HAp) structure which is well known as an excellent inorganic ion exchanger for various heavy metal ions in solutions. In this study, the reusability of cow-bone, pig-bone and fish-bone as a potential material for the removal of heavy metals in solutions was evaluated from the removal of Cu(II) ion in batch tests. The surface properties of three bones, calcined at different temperatures, were measured with SEM, XRD, FT-IR analyses. From the SEM analysis, a clear development of heterogeneity as well as pores having small diameter was observed as the calcination temperature increased. The results of X-ray diffraction analysis showed well developed crystallinity on the surface of calcined bones obtained at higher temperatures, suggesting a transform of amorphous type to crystalline type. Fourier transform infrared (FT-IR) analysis showed disappearance of water molecule on the surface of HAp and organic functional groups of the HAp with increasing the calcination temperatures. Cu(II) removal in the control test was below 15%. By the way, additional 40% increase of Cu(II) removal was observed in the presence of calcined bones. For three bones, Cu(II) removal was decreased as the calcined temperature increased. Cu(II) removal was increased as the solution pH increased due to a favorable condition for the cation exchange as well as precipitation.

Screening method for amines by derivatization reaction on TLC (TLC 상 유도체화 반응을 이용한 아민 계 화합물의 Screening 방법)

  • Choi, Sung-Woon;Lee, Hye-In;Sung, Nack-Do
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.228-234
    • /
    • 2013
  • Methamphetamine is an amine-containing illegal drug and is distributed unlawfully in South Korea. Finding a rapid, convenient and semi-quantitative determination method for methamphetamine is a very important issue in the area of forensic drug testing. As an effort to develop new screening method, the reactions between three organic compounds which are structurally similar to methamphetamine and N-(9-fluorenylmethoxycarbonyloxy) succinimide (FMOC-NHS) were performed on silica gel ($SiO_2$) TLC plates. Three reference compounds were synthesized and used for the identification, comparison and study of the limit of detection (LOD) of the products obtained from a direct reaction on a TLC plate. As a result, FMOC-NHS as a derivatization reagent generated compounds containing highly UV-active functional groups on the TLC plate after reacting with primary- and secondary amines. In the experiment 2D the LOD of amines was in the range of 0.045 and 0.01 mg/mL ($2{\mu}L/spot$), and in 1D the LOD was in the range of 0.002 and 0.007 mg/mL ($2{\mu}L/spot$). The LODs of the compounds tested were dependent on the concentration of the derivatizing reagent.

A Study on the Formation of OH Radical by Metal-supported Catalyst in Ozone-catalytic Oxidation Process (오존촉매산화공정에서 금속 담지촉매에 의한 수산화라디칼 생성연구)

  • Lee, Sun Hee;Choi, Jae Won;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.432-439
    • /
    • 2018
  • Metal catalysts such as Fe, Co, Mn, and Pd supported on the activated carbon (AC) were prepared to improve functional groups for the chemical adsorption and catalytic ozonation. Following ascending orders of the phenol decomposition rate, dissolved ozone decomposition ratio and TOC (total organic carbon) removal from experimental results of advanced oxidation process (AOP) were observed: Fe-AC < AC < Co-AC < Mn-AC < Pd-AC. BET analysis results showed that the physical properties of the metal impregnated activated carbon had no effect on the catalytic ozonation, and the catalytic effect was dependent on the kind of impregnated metal. The ratio of the formed concentration of OH radical to that of ozone (RCT) was measured by using the decomposition outcome of p-chlorobenzoic acid, a probe compound that reacts rapidly with OH radical but slowly with ozone. The measured values of RCT were $5.48{\times}10^{-9}$ and $1.47{\times}10^{-8}$ for the ozone alone and activated carbon processes, respectively, and $2.13{\times}10^{-9}$, $1.51{\times}10^{-8}$, $4.77{\times}10^{-8}$, and $5.58{\times}10^{-8}$ for Fe-AC, Co-AC, Mn-AC, and Pd-AC processes, respectively.

A study on the Recovery of waste fluids of the conservation treatment of waterlogged wooden artifacts (수침목재유물보존처리 폐액의 재활용에 관한 연구)

  • Yang, Seok-Jin;Kim, Jong-Hwa;Song, Ju-Yeong;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.108-115
    • /
    • 2012
  • Archaeological waterlogged woods found under the sea, in lakes, or in swamp environments are generally weak and fragile. If waterlogged wood materials were taken out of the water and left without modification, they would collapse and lose their original dimensions completely. Conservation is performed to replace the water with chemical agents and to give dimensional stabilization and durability. EDTA and PEG are the most commonly used in the preservation of wood. pH control-precipitation method is used for recovery of EDTA from waste fluid of archeological waterlogged wood conservation treatment. The black substance is eliminated from wood as Fe-EDTA complex are formed and EDTA is separated and precipitated from Fe-EDTA complexes at pH 2.68 or less. The result of analysis of the precipitated products and the commercial EDTA by FT-IR and FE-SEM showed that precipitated product by pH adjusted was not a type of Fe-EDTA complex, but pure EDTA. Waste fluid produced in PEG treatment shows the black color and has an offensive odor by organic matter extracted from wood. Color of waste fluid is decolored with oxidation reaction by peroxy hydrate. In FT-IR and SEM-EDX of PEG after freeze-drying process, no significant change of functional groups induced from oxidation is observed, and any metal ion does not exist in the solid PEG specimen. The molecular weight of PEG is measured using GPC and viscometry. Properties of PEG before and after preservation treatment, and after oxidation with $H_2O_2$ were not changed. Consequently, the peroxidation with $H_2O_2$ is a reasonable and simple method to decolor the used PEG solution.