• 제목/요약/키워드: Organic electrode material

검색결과 216건 처리시간 0.033초

Highly flexible, transparent and low resistance IZO-Ag-IZO multilayer electrode for flexible OLEDs

  • Cho, Sung-Woo;Choi, Kwang-Hyuk;Jeong, Jin-A;Lee, Se-Hyung;Kim, Jang-Joo;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.609-612
    • /
    • 2008
  • Characteristics of indium-zinc-oxide (IZO)-Ag-IZO multilayer grown on a PET substrate were investigated for flexible organic emitting diodes. By inserting very thin Ag layer between amorphous IZO, IZO-Ag-IZO (IAI) multilayer anode exhibited remarkably reduced sheet resistance and high transmittance due to the surface plasmon resonance effect and Ag layer.

  • PDF

전해처리에 의한 매립지 침출수의 전처리에 관한 연구 (A Study on the Pretreatment of Municipal Landfill Leachate by Electrolysis)

  • 이병인;황순홍
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.417-425
    • /
    • 1994
  • Leachate from municipal landfill site is known to be hard to treat because it commonly contains various toxic material and heavy metals. In addition, portions of biodegradable organic substances in leachate are decreasing in the course of wastes stabilization, which is one of the critical reason for inefficient biological treatment at the end stage of landfill site operation. So this study was conducted to examine the feasibility of municipal lanuill leachate pretreatment using electrolysis. The optimum electrode combination was made. The optimum electrode combination was found to be lead and graphite.

  • PDF

일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기 (Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED)

  • 김지훈;맹민재;홍종암;황주현;최홍규;문제현;이정익;정대율;최성율;박용섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Polypyrrole-Glucose oxidase 효소전극의 Ethanol 첨가효과 (An Effect of Ethanol on Polypyrrole-Glucose Oxidase Enzyme Electrode)

  • 김현철;구할본;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 1999
  • In the case of immobilizing of glucose oxidase in organic polymer using electrosynthesis, the glucose oxidase obstructs charge transfer and mass transport during the film growth. This may lead to short chained polymer and/or make charge-coupling weak between the glucose oxidase and the backbone of the polymer. That is mainly due to insulating property and net chain of the glucose oxidase. Since being the case, it is useless to increase in amount of glucose oxidase more than reasonable in the synthetic solution. We establish qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. As ethanol was added by 0.1 rnol dm" in the synthetic solution, Michaelis-Menten constants of the resulting enzyme electrode decreased from 30.7 mmol $dm^{-3}$ to about 2 mmol $dm^{-3}$. That suggests increase in affinity of the enzyme electrode for glucose and in amount of the immobilized enzyme.zyme.

  • PDF

전극에 따른 CuPc Field-effect Transistor의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor with Different Electrodes)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.930-933
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

CuPc를 이용한 전계효과트랜지스터의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor)

  • 이호식;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.410-411
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

전극 변화에 따른 CuPc Field-effect Transistor의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor with Different Electrodes)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.506-507
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel device was width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

전극에 따른 CuPc Field-effect Transistor의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor with Different Electrodes)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집
    • /
    • pp.12-13
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

유기 분자선 증착법에 의해 성막된 Pentacene 박막의 물리적, 전기적 특성에 관한 연구 (Physical and electrical characteristics of Pentacene thin films prepared by)

  • 김대엽;김대식;최종선;강도열;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.605-608
    • /
    • 1999
  • We report investigations on a Pentacene thin film as a component for active layer of Organic thin film transistors. Pentacene film was deposited by Organic Molecular Beam Deposition(OMBD) and Al electrode was deposoted by vacuum evaporation. Electrical characterization of Pentacene films were measured by the three-terminal contact resistance methods, as the results contact resistance between pentacene films and the Aluminium electrode is 5.064G$\Omega$. The Al contact with the pentacene shows the bottom contact resistance. From the current-voltage characteristics, electrical conductivity of the Pentacene film is found as ~ 10$^{-4}$ /cm. physical characterization of pentacene films were measured by UV-spectrum and Cyclic-Voltammetry method.

  • PDF

DC 스퍼터링 증착에 의한 AI 전극을 갖는 전계발광소자 제작 (Fabrication of the Electroluminescence Devices with Al electrode deposited by DC sputtering)

  • 윤석범
    • 한국전기전자재료학회논문지
    • /
    • 제13권5호
    • /
    • pp.376-382
    • /
    • 2000
  • We successfully fabricated OLED(Organic Light Emitting Diodes) with Al cathodes electrode deposited by the DC magnetron sputtering. The effects of a controlled Al cathode layer of an Indium Tin Oxide (ITO)/blended single polymer layer (PVK Bu:PBD:dye)/Al light emitting diodes are described. The PVK (Poly(N-vinylcarbazole)) and Bu-PBD (2-(4-biphenyl-phenyl)-1,3,4-oxadiazole) are used hole transport polymer and electron transport molecule respectively. We found that both current injection and electroluminescence output are significantly different with a variable DC sputtering power. The difference is believed to be due to the influence near the blended polymer layer/cathode interface that results from the DC power and H$\sub$2//O in a chamber. And DC sputtering deposition is an effective way to fabricate Al electrodes with pronounced orientational characteristics without damage occurring to metal-organic interface during the sputtering deposition.

  • PDF