• Title/Summary/Keyword: Organic battery

Search Result 128, Processing Time 0.023 seconds

Surface-modified Li[Ni0.8Co0.15Al0.05]O2 Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.263-268
    • /
    • 2016
  • This study describes the effect of coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode surface with a homogeneous carbon layer produced by carbonization of polyvinylidene fluoride (PVDF) as a novel organic source. The phase integrity of the above cathode was not affected by the carbon coating, whereas its rate capability and cycling performance were enhanced. Similarly, the cathode thermal stability was also improved after coating, which additionally protected the cathode surface against the reactive electrolyte containing hydrofluoric acid (HF). The results show that coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode with carbon using the PVDF precursor is an effective approach to enhance its electrochemical properties.

I-V Properties OLED by CMP Process (CMP 공정을 적용한 유기발광소자의 전압.전류 특성)

  • Choi, Gwon-Woo;Lee, Woo-Sun;Jun, Young-Kil;Jueng, Pan-Gum;Seo, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1357-1358
    • /
    • 2006
  • Indium tin oxide (ITO) thin film is a transparent electrode, which is widely applied to solar battery, illuminators, optical switches, liquid crystal displays (LCDs), plasma display panels (PDPs), and organic light emitting displays (OLEDs) due to its easy formation on glass substrates, goof optical transmittance, and good conductivity. ITO thin film is generally fabricated by various methods such as spray, CVD, evaporation, electron gun deposition, direct current electroplating, high frequency sputtering, and reactive DC sputtering. However, some problems such as peaks, bumps, large particles, and pin-holes on the surface of ITO thin film were reported, which caused the destruction of color quality, the reduction of device life time, and short-circuit. Chemical mechanical polishing (CMP) processis one of the suitable solutions which could solve the problems.

  • PDF

Silyl-group functionalized organic additive for high voltage Ni-rich cathode material

  • Jang, Seol Heui;Jung, Kwangeun;Yim, Taeeun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1345-1351
    • /
    • 2018
  • To allow stable cycling of layered nickel-rich cathode material at high voltage, silyl-functionalized dimethoxydimethylsilane is proposed as a multi-functional additive. In contrast to typical functional additive, dimethoxydimethylsilane does not make artificial cathode-electrolyte interfaces by electrochemical oxidation because it is quite stable under anodic polarization. We find that dimethoxydimethylsilane mainly focuses on scavenging nucleophilic fluoride species that can be produced by electrolyte decomposition during cycling, leading to improving interfacial stability of both nickel-rich cathode and graphite anode. As a result, the cell cycled with dimethoxydimethylsilane-controlled electrolyte exhibits 65.7% of retention after 100 cycle, which is identified by systematic spectroscopic analyses for the cycled cell.

Electrochemical Characteristics of Silicon/Carbon Anode Materials using Petroleum Pitch (석유계 피치를 사용한 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.561-567
    • /
    • 2018
  • In this study, the electrochemical characteristics of Silicon/Carbon anode materials were analyzed to improve the cycle stability of silicon as an anode materials of lithium ion battery. Porous silicon was prepared from TEOS by the $st{\ddot{o}}ber$ method and the magnesiothermic reduction method. Silicon/Carbon anode materials were synthesized by varying the mass ratio between porous silicon and pitch. Physical properties of the prepared Silicon/Carbon anode materials were analyzed by XRD and TGA. Also the electrochemical performances of Silicon/Carbon anode materials were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC : DEC = 1 : 1 vol%). The Silicon/Carbon anode composite (silicon : carbon = 5 : 95 in weight) has better capacity (453 mAh/g) than those of other composition cells. The cycle performance has an excellent capacity retention from 2nd cycle to 30th cycle.

Synthesis of Si-SiC-CuO-C Composite from Silicon Sludge as an Anode of Lithium Battery (실리콘 슬러지로부터 리튬전지(電池) 음극용(陰極用) Si-SiC-CuO-C 복합물의 합성(合成))

  • Jeong, Goo-Jin;Jang, Hee-Dong;Lee, Churl-Kyoung
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • As a recycling of Si sludge from Si wafer process, a Si-SiC-CuO-C composite material was synthesized and investigated as an anode material for lithium batteries. The Si sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by organic washing, magnetic separation, and acid washing. The Si-SiC-CuO-C composite from the recovered Si-SiC mixture was prepared by high-energy mechanical milling. According to the electrochemical tests such as charge-discharge capacity and cycling behavior, it showed the improved cycle performance. The SiC and CuO-related phases were presumed to restrain the volume expansion of the anode and Fe, however, should be removed below 10 ppm prior to synthesis of the composite because it caused the capacity loss of the active material itself.

Research Trend of Solid Electrolyte for Lithium Rechargeable Batteries (리튬 이차전지용 고체전해질 개발 동향)

  • Suh, Soon-Sung;Yi, Cheol-Woo;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Recently lithium ion secondary batteries (LIB) have rapidly developed because of their advantages such as high energy densities and capacities. Among them, an electrical vehicle which is the one of the environmental-friendly transportation facilities has been received a great attention, but, it is needed to overcome several obstacles of the LIB performances. LIB is practically adapted to Hybrid Electric Vehicle (HEV), but the issues for high capacities, long life time and safety should be solved. Moreover, LIBs still have some possibilities of explosion in the case of overheating of the used organic electrolyte and overcharging of the cell. Hence, it is urgently needed to replace the liquid electrolytes into the solid electrolytes due to the safety issues. Therefore, in this review, we summarized and discussed the research trends of the solid electrolyte to solve the concerns of safety and capacity of LIBs and published patents and articles.

A Study on the Synthesis of Aluminum Oxalate from Aluminum Hydroxide (수산화(水酸化)알루미늄으로부터 Aluminum Oxalate의 합성(合成) 연구(硏究))

  • Lee, Hwa-Young;Cho, Byung-Won
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.38-43
    • /
    • 2009
  • The synthesis of aluminum oxalate, one of the aluminum organic compounds, has been performed using aluminum hydroxide as a raw material. For this aim, domestic aluminum hydroxide of 99.7% purity was dissolved by oxalic acid to produce an aqueous aluminum solution. As a result, it was found that aluminum hydroxide could be dissolved almost completely by the reaction with 1.0 mole/l oxalic acid solution at $90^{\circ}C$ for 16 hr. It was strongly required to keep the ratio of ethanol/Al solution more than 2.0 for the synthesis of aluminum oxalate from the aluminum solution. Furthermore, the pH should be controlled to be more than 8.2 in order to obtain the recovery of aluminum oxalate higher than 90%. From the chemical analysis of aluminum oxalate prepared in this work, the content of $NH_4$, Al and C was found to be 14.5, 7.18 and 17.4%, respectively. Accordingly, the aluminum oxalate synthesized from the aluminum solution was confirmed to be $(NH_4)_3Al(C_2O_4)_3$ $3H_2O$.

Organic Solvents Containing Zwitterion as Electrolyte for Li Ion Cells

  • Krishnan, Jegatha Nambi;Kim, Hyung-Sun;Lee, Jae-Kyun;Cho, Byung-Won;Roh, Eun-Joo;Lee, Sang-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1705-1710
    • /
    • 2008
  • Imidazolium based zwitterions, 1,2-dimethylimidazolium-3-n-propanesulfonate (DMIm-3S) and 1-Butylimidazolium-3-n-butanesulphonate (BIm-4S), were synthesized, and utilized them as additive for Li ion cell comprising of graphite anode and $LiCoO_2$ cathode. The use of 10 wt% of DMIm-3S in 1 M $LiPF_6$, EC-EMCDMC (1:1:1 (v/v)) resulted in the increased high rate charge-discharge performance. The low temperature performance of the Li ion cells at about −20 ${^{\circ}C}$ was also enhanced by these zwitterion additives. The DMIm- 3S additive resulted in the better capacity retention by the Li-ion cells even after 120 cycles with 100% depth of discharge (DOD) at 1 C rate in room temperature. Surface morphology of both graphite and $LiCoO_2$ electrode before and after 300 cycles was studied by scanning electron microscopy. An analogous study was performed using liquid electrolyte without any additive.

Air Sampling For Volatile Organics Using an Adsorbent (흡착제를 이용한 휘발성 유기물 채취)

  • ;L.R.Berrafato
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.41-46
    • /
    • 1992
  • To perform a long-term ambient sampling study at a residential site, an air sampler was constructed to collect 24-hour integrated air samples suitable for the volatile organic compounds (VOCs) analysis. It includes an esthetically acceptance due to proximity to homes, as fell as providing the required sampling specifications. The VOCs sampler accomodates four 5/8 "stainless steel(SS) traps packed with adsorbent(Tenax) and is capable of four flow rates in the range of 5 to 50 cc/min. Sintered metal filters(10 micrometer) were directly connected to the inlet of the trap adapters. Additional specifications include: 1) constructed of organically inert materials, 2) weatherproof, 3) battery operated, 4) collecting of VOCs at a breathing zone level, and 5) quiet operation with micro diaphragm pumps wrapped by the sponge. The pump/battery system was separated from the sampling shelter. Sound levels measured for this system were below permissible sound levels (NJDEP) at a residential site. The sampler has been successfully operated at both ground level in a residential area and on the roof of a one story elementary school.hool.

  • PDF

Genotoxicity of Environment-friendly Organic Materials of Plant Origin in the Micronucleus Test Using Chinese Hamster Lung Cells (Chinese Hamster Lung Cell의 소핵시험을 이용한 식물추출물 유기농업자재의 유전독성평가)

  • Cho, Hyeon-Jo;Park, Kyung-Hun;Jeong, Mi Hye;Park, Soo Jin;Oh, Jin-Ah;Kim, Won-Il;Cho, Namjun;Ryu, Jae-Gee;Paik, Min-Kyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.138-143
    • /
    • 2014
  • BACKGROUND: Azadirachta Indica extract(AIE) and Sophorae radix extract(SRE) are widely used as environment-friendly organic materials of plant origin in South Korea. METHODS AND RESULTS: In this study, the in vitro micronucleus(vitMN) tests of two samples of AIE and SRE were conducted to evaluate their genotoxicity using the Chinese hamster lung(CHL) cell. This study was composed of two parts; cytochalasin B(cyto B) test and non-cyto B test. Mitomycin C and colchicine were used as positive controls. As a result, the incidence of micronucleus(MN) in all AIE and SRE treated groups increased in dose-dependent manner, but were less than 2.2% in 1,000 binucleated cells. In addition, there were no significant increases of MN incidence in all AIE and SRE treated groups, compared with the negative control group. CONCLUSION: Therefore, we suggest that AIE samples and SRE samples used in this study may have no genotoxicity in the in vitro micronucleus test using the CHL cells. In our previous study, we reported that AIE and SRE did not cause genotoxicity in Ames test. According to the genotoxicity battery system, we concluded that AIE and SRE used in this study have no genotoxic effects to humans.