DOI QR코드

DOI QR Code

Research Trend of Solid Electrolyte for Lithium Rechargeable Batteries

리튬 이차전지용 고체전해질 개발 동향

  • Suh, Soon-Sung (Department of Chemistry, Korea University) ;
  • Yi, Cheol-Woo (Department of Chemistry and Institute of Basic Science, Sungshin Women's University) ;
  • Kim, Keon (Department of Chemistry, Korea University)
  • Received : 2011.11.17
  • Accepted : 2011.12.04
  • Published : 2012.02.28

Abstract

Recently lithium ion secondary batteries (LIB) have rapidly developed because of their advantages such as high energy densities and capacities. Among them, an electrical vehicle which is the one of the environmental-friendly transportation facilities has been received a great attention, but, it is needed to overcome several obstacles of the LIB performances. LIB is practically adapted to Hybrid Electric Vehicle (HEV), but the issues for high capacities, long life time and safety should be solved. Moreover, LIBs still have some possibilities of explosion in the case of overheating of the used organic electrolyte and overcharging of the cell. Hence, it is urgently needed to replace the liquid electrolytes into the solid electrolytes due to the safety issues. Therefore, in this review, we summarized and discussed the research trends of the solid electrolyte to solve the concerns of safety and capacity of LIBs and published patents and articles.

최근 리튬이차전지는 높은 에너지 밀도와 고용량화되어 급속도로 발전하고 있다. 그 중에서도 친환경 수송 장치의 전기자동차가 주목 받고 있는데 이를 위해서는 리튬이차전지의 많은 성능개선이 요구된다. 현재 리튬이차전지는 '하이브리드 전기자동차 (Hybrid Electric Vehicle, HEV)'에 실제 적용되고 있으며 이를 위해서 높은 용량, 긴 수명, 그리고 안전성 확보가 반드시 필요하다. 하지만현재 리튬이차전지에서 리튬이온의 이동을 위해 사용하는 유기전해액의 과열 및 과충전 상태에서 폭발의 위험성을 가지고 있기에 높은 안전성을 가진 고체전해질로의 대체가 시급하다. 따라서 본 연구에서는 리튬이차전지의 안정성 및 성능 개선을 위한 고체전해질의 연구 동향과 출원된 특허 및 논문에 대하여 논의하고자 한다.

Keywords

References

  1. W, Tahil, 'The Zinc Air Battery and the Zinc Economy: A Virtuous Circle' Meridian International Research, (2007).
  2. G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, and W. Wilcke, 'Lithium-Air Battery: Promise and Challenges' J. Phys. Chem. Lett., 1, 2193 (2010). https://doi.org/10.1021/jz1005384
  3. X. Zhuo-bing, M. Ming-you, W. Xian-ming, H. Ze-qiang and C. Shang, 'Thin-film lithium-ion battery derived from $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_{4})_{3}$ sintered pellet' Trans. Nonferrous Met. Soc. China, 16, 281 (2006). https://doi.org/10.1016/S1003-6326(06)60047-2
  4. A. D. Pasquier, I. Plitz, S. Menocal, and G. Amatucci, 'A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications' J. Power Sources, 115, 171 (2003). https://doi.org/10.1016/S0378-7753(02)00718-8
  5. K. Kurashima and T. Tamakoshi, 'Recent sodium sulfur battery applications in Japan' TOKYO ELECTRIC POWER COMPANY.
  6. J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, and C.D. Evans, 'Thin-film lithium and lithium-ion batteries' Solid State Ionics, 135, 33 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
  7. B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, X. Yu and R. A. Zuhr, 'Thin-film rechargeable lithium batteries' J. Power Sources,54, 58 (1995). https://doi.org/10.1016/0378-7753(94)02040-A
  8. R. A. Huggins, 'Lithium alloy negative electrodes' J. Power Sources, 81, 13 (1999). https://doi.org/10.1016/S0378-7753(99)00124-X
  9. J. O. Besenhard, J. Ynag, and M. Winter, 'Will advanced lithium-alloy anodes have a chance in lithium-ion batteries' J. Power Sources, 68, 87 (1997). https://doi.org/10.1016/S0378-7753(96)02547-5
  10. A. Karthikeyan, P vinatier, and A. Levasseur, 'Study of lithium glassy solid electrolyte/electrode interface by impedance analysis' Bull. Mater. Sci., 23, 179 (2000). https://doi.org/10.1007/BF02719906
  11. P. Knauth, 'Inorganic solid Li ion conductors: An overview' Solid State Ionics, 180, 911 (2009). https://doi.org/10.1016/j.ssi.2009.03.022
  12. J. W. Fergus, 'Ceramic and polymeric solid electrolytes for lithium-ion batteries' J. Power Sources, 16, (2010).
  13. J. H. Kennedy, S. Sahami, S. W. Shea, and Z. Zhang, 'Preparation and conductivity measurements of $SiS_{2}-Li_{2}S$ glasses doped with LiBr and LiCl' Solid State Ionics, 18, 368 (1986). https://doi.org/10.1016/0167-2738(86)90142-6
  14. K. Takadaa, T. Inada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, and R. Kanno, 'Solid-state lithium battery with graphite anode' Solid State Ionics, 158, 269 (2003). https://doi.org/10.1016/S0167-2738(02)00823-8
  15. A, Overton, 'Inorganic Chemistry Fourth Edition' p 729 (2006).
  16. K. H. Cho, 'Fabrication $Li_{2}O-B_{2}O_{3}-P_{2}O_{5}$ Solid Electrolyte by Aerosol Flame Deposition for ThinFilm Battery' Ph.D. Dissertation, Hanyang University, Seoul, Korea (2008).
  17. M. L. F. Nascimento and N. O. Dantas, 'Anderson-Stuart model of ionic conductors in $Na_{2}O-SiO_{2}$ glasses' Ciencia & Engenharia, 12, 7 (2003).
  18. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama1, R. Kanno, M .Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, 'A lithium superionic conductor' Nat. Mater., 10, 682 (2011). https://doi.org/10.1038/nmat3066
  19. S. Stramare, V. Thangadurai, and W. Weppner, 'Lithium Lanthanum Titanates: A review' Chem. Mater., 15, 3974 (2003). https://doi.org/10.1021/cm0300516
  20. V. Thangadurai, H. Kaack, and W. J.F. Weppner, 'Novel fast lithium ion conduction in Garnet-type $Li_{5}La_{3}M_{2}O_{12}$ (M = Nb, Ta), J. Am. Ceram. Soc., 86, 437 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03318.x
  21. K. Arbi, A. Kuhn, J. Sanz, and F. Garcia-Alvarado, 'Characterization of Lithium Insertion NASICON-Type $Li_{1-x}Ti_{2-x}Al_{x}(PO_{4})_{3}$ and Its Electrochemical Behavior' J. Electrochem. Soc., 157, 654 (2010). https://doi.org/10.1149/1.3368764
  22. R. Komiya, A. Hayashi, H. Morimoto, and M. Tatsumisago, 'Solid state lithium secondary batteries using an amorphous solid electrolyte in the system' Solid State Ionics, 140, 84 (2001).
  23. G. X. Wang, D. H. Bradhurst, S. X. Dou, and H. K. Liu, '$LiTi_{2}(PO_{4})_{3}$ with NASICON-type structure as lithiumstorage materials' J. Power Sources, 124, 231 (2003). https://doi.org/10.1016/S0378-7753(03)00609-8
  24. J. L. Narvaez-Semanate and A.C.M. Rodrigues, 'Microstructure and ionic conductivity of $Li_{1+x}Al_{x}Ti_{2-x}(PO_{4})_{3}$' Solid State Ionics, 181, 1197 (2010). https://doi.org/10.1016/j.ssi.2010.05.010
  25. H. Aono and E. Sugimoto, 'Electrical property and sinterability of $LiTi_{2}(PO_{4})_{3}$ mixed with lithium salt ($Li_{3}PO_{4}$ or $Li_{3}BO_{3}$)' Solid State Ionics, 47, 257 (1991). https://doi.org/10.1016/0167-2738(91)90247-9
  26. K. Arbi, S. Mandal, J. M. Rojo, and J. Sanz, 'Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors $Li_{1+x}Ti_{2-x}Al_{x}(PO_{4})_{3},\;0{\leq}x{\leq}0.7$. A Parallel NMR and Electric Impedance Study' Chem. Mater., 14, (2002).
  27. R. Kanno and M. Murayama, J. Electrochem. Soc., 148, 742 (2001). https://doi.org/10.1149/1.1379028
  28. Z. Liu, Fuqiang Huang, J. Yang, Baofeng Wang, and J. Sun, 'New lithium ion conductor, thio-LISICON lithium zirconium sulfide system' Solid State Ionics, 179, (2008).
  29. M. Murayama, N. Sonoyama, A. Yamada, and R. Kanno, 'Material design of new lithium ionic conductor, thioLISICON in the $Li_{2}S-P_{2}S_{5}$ system' Solid State Ionics, 170, 173 (2004). https://doi.org/10.1016/j.ssi.2004.02.025
  30. M. Murayama, R. Kanno, Y. Kawamoto, and T. Kamiyama, 'Structure of the thio-LISICON, $Li_{4}GeS_{4}$' Solid State Ionics, 154, 789 (2002). https://doi.org/10.1016/S0167-2738(02)00492-7
  31. Y. Shibutani, F. Mizuno, A. Hayashi, and M. Tatsumisago, Chemistry for Sustainable Development, 15, 219 (2007).
  32. H. Hyooma and K. Hayahi, Mater. Res. Bull., 23, 1399 (1988). https://doi.org/10.1016/0025-5408(88)90264-4
  33. V. Thangadurai and W. Weppner, '$Li_{6}ALa_{2}Ta_{2}O_{12}$ (A = Sr, Ba): Novel Garnet-Like Oxides for Fast Lithium Ion Conduction' Adv, Funct. Mater., 15, 107 (2005). https://doi.org/10.1002/adfm.200400044
  34. S. Stramare, V. Thangadurai, and W. Weppner, 'Lithium Lanthanum Titanates: A Review' Chem. Mater., 15, 3974 (2003). https://doi.org/10.1021/cm0300516
  35. Y. Inaguma, C. Liquan, M. Itoh, and T. Nakamura, 'High Ionic Conductivity in Lithium Lanthanum Titanate' Solid State Commun., 86, 689 (1993). https://doi.org/10.1016/0038-1098(93)90841-A
  36. M. Nakayama, T. Usui, Y. Uchimoto, M. Wakihara, and M. Yamanoto, Changes in Electronic Structure upon Lithium Insertion into the A-Site Deficient Perovskite Type Oxides $(Li,La)TiO_{3}$' J. Phys. Chem. B, 109, 4135 (2005). https://doi.org/10.1021/jp046062j
  37. K. Mizumoto and S. Hayashi, 'Lithium ion conduction in A-site deficient perovskites' Solid State Ionics, 116, 263. (1999). https://doi.org/10.1016/S0167-2738(98)00414-7
  38. US 특허 5314765.
  39. US 특허 5338625.
  40. US 특허 5512147.
  41. US 특허 5567210.
  42. US 특허 5597660.
  43. US 특허 5612152.
  44. N. J. Dudney and B. J. Neudecker, 'Solid state thin-film lithium battery systems' Curr. Opin. Solid St. M., 4, 479 (1999). https://doi.org/10.1016/S1359-0286(99)00052-2
  45. http://www.aist.go.jp/aist_j/press_release/pr2010/pr20101105/pr20101105.html.
  46. http://www.ohara-inc.co.jp/en/product/electronics/licgc.html.
  47. NIKKEI ELECTRONICS 2010.5.17.

Cited by

  1. Relationships among growth mechanism, structure and morphology of PEALD TiO2films: the influence of O2plasma power, precursor chemistry and plasma exposure mode vol.27, pp.30, 2016, https://doi.org/10.1088/0957-4484/27/30/305701
  2. Sodium-Metal Halide and Sodium-Air Batteries vol.15, pp.10, 2014, https://doi.org/10.1002/cphc.201402215