• Title/Summary/Keyword: Organic battery

Search Result 126, Processing Time 0.021 seconds

The Effect of Phytase and Organic Acid on Growth Performance, Carcass Yield and Tibia Ash in Quails Fed Diets with Low Levels of Non-phytate Phosphorus

  • Sacakli, P.;Sehu, A.;Ergun, A.;Genc, B.;Selcuk, Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.198-202
    • /
    • 2006
  • An experiment was conducted to investigate the effect of phytase, organic acids and their interaction on body weight gain, feed consumption, feed conversion ratio, carcass yield and tibia ash. A total of 680 three-day old Japanese quail chicks (Coturnix coturnix japonica) were assigned to 20 battery brooders, 34 chicks in each. The experimental period lasted 35 days. The treatment groups employed were: 1) a positive control which included 3.5 g available phosphorus (AP)/kg diet and 10 g Ca/kg diet; 2) a negative control which included 2 g AP/kg diet and 8 g Ca/kg diet, 3) negative control diet supplemented with either 300 FTU phytase/kg diet (phytase) or 4) 2.5 g organic acid (lactic acid+formic acid)/kg diet (organic acid); or 5) 300 FTU phytase/kg diet+2.5 g organic acid/kg diet (phytase+organic acid). All birds were fed with the positive control diet for a week and then transferred to the dietary treatments. At the end of the study, there were no differences (p>0.005) among the groups in body weight, weight gain, feed consumption, feed conversion ratio and carcass yield. Tibia ash, however, was reduced (p<0.001) for quails fed the negative control diet containing a low-level of AP compared to the positive control diet containing adequate AP. The addition of phytase, organic acid or phytase+organic acid to the diets containing the low-level of AP improved (p<0.001) tibia ash. On the other hand, an extra synergistic effect of phytase and organic acid on tibia ash was not determined. This study demonstrated that it may be possible to reduce supplemental level of inorganic P with phytase and/or organic acid supplementation for quail diets without adverse effect on performance and tibia ash.

Synthesis of $LiFePO_4$ by solid-state reaction using organic acids as carbon sources (카본소스로서 유기산을 이용한 $LiFePO_4$의 고상 합성법)

  • Kam, Dae-Woong;Kim, Ke-Tack;Kim, Hyun-Soo;Son, Young-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.279-279
    • /
    • 2009
  • $LiFePO_4$는 낮은 전기전도도로 인하여 전이금속의 도핑과 카본코팅으로 전기화학적 특성을 향상시키려는 연구가 많이 되어 왔다. 또한 다양한 합성법으로 $LiFePO_4$의 입자사이즈를 최적화 하기 위해 많은 연구가 진행중이다. 특히 고상 합성법은 결정의 미세화가 가능하고, 상온에서 쉽고 용이하게 원소간의 합금화 및 화학반응을 유도하는 등의 장점으로 인해 가장 널리 사용하고 있는 합성법중 하나이다. 이번 연구에서도 고상합성법을 사용하여 $LiFePO_4$를 합성했으며, 카본소스로서 카르복시산등의 유기산을 사용하여 코팅을 시도해 보았다. 이렇게 합성된 $LiFePO_4$의 물리적 측정을 통하여 입사의 형상 및 크기를 관찰하였고, 하프셀을 구성하여 전기화학적 특성을 확인하였다.

  • PDF

Electrochemical Properties of FeS2 Thin Film Electrodes for Thermal Batteries (열전지용 FeS2 박막전극의 전기화학적 특성)

  • Im, Chae-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.318-324
    • /
    • 2017
  • Powder compaction technology is widely used to prepare thermal battery components. This method, however, is limited by the size, thickness, and geometry of the battery components. This limitation leads to excessive cell capacity, overweight, and higher cost of the pellets, which decreases the specific capacities and delays the activation time of thermal batteries. $FeS_2$ thin-film cathodes were fabricated by tape-casting technology and analyzed by SEM and EDS in this paper. The residual organic binder of the $FeS_2$ thin-film cathodes decreased with the temperature of the heat treatment, which improved the specific capacity because of the lower resistance. Specific capacities of the $FeS_2$ thin-film cathodes decreased because of the higher residual binder and the restrictive reaction of active materials with molten salts as the thickness increased. $FeS_2$ thin-film cathodes showed much higher specific capacity (1,212.2 As/g) than pellet cathodes (860.7 As/g) at the optimal heat-treatment temperature ($230^{\circ}C$).

Electrochemical Characteristics of $LiMn_{2}O_{4}$/Lithium Cells in Organic Electrolyte (유기전해액 $LiMn_{2}O_{4}$/Lithium 전지의 전기화학적 특성)

  • 임정환;도칠훈;문성인;윤문수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.371-374
    • /
    • 2000
  • The electrochemical properties of LiM $n_2$ $O_4$as a cathode and an anode for the lithium secondary battery were evaluated. When LiM $n_2$ $O_4$ material was used as the cathode with the current collector of aluminum, the 1st specific capacity and the 1st Ah efficiency in LiM $n_2$ $O_4$/lithium cell were 123 mAh/g and 91.7%, respectively The anodic properties of LiM $n_2$ $O_4$ material was also evaluated in the LiM $n_2$ $O_4$/1ithium cell with the current collector of copper. It showed that the LiM $n_2$ $O_4$ was useful as the anode for the lithium secondary battery. During the 1st discharge, a potential plateau was observed at the potential of 0.3 $V_{Li}$ Li+/. The 1st specific charge capacity and the 1st specific discharge capacity were 790 mAh/s and 362 mAh/g, respectively. Therefore, the 1st Ah efficiency was 46%. The discharge capacity was gradually faded with the charge-discharge cycling to about 50th cycles. Thereafter, the discharge capacity was stabilized to about 110 mAh/g.

  • PDF

Conductivity and Electrochemical characterization of Lithium ion secondary battery electrolytes (리튬이온 2차 전지용 전해액의 이온전도도와 전기화학적 특성)

  • 임동규;이제혁;변문기;조봉희;김영호;우병원;나두찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.295-298
    • /
    • 1998
  • We have investigated ionic conductivity and electrochemical stability of the electrolytes containing organic solvent. Ion conductivities were measured between 10 and 80$^{\circ}C$, and electrochemical stabilities were determined by cyclic voltammetry on glassy carbon, platinum and aluminum electrodes. Ionic conductivity of electrolyte(EC:DEC=1:1) with IM LiPF$\_$6/ shows better than that of the other electrolytes having Li salts. The IM LiBF$_4$-PC electrolyte exhibits good electrochemical stability. IM LiPF$\_$6/ (EC:DEC=1:1) and IM LiPF$\_$6/ (EC:DMC=1:1) electrolytes are used for the high capacity of battery system.

  • PDF

The Effect of Additives on the Performance of Aqueous Organic Redox Flow Battery Using Quinoxaline and Ferrocyanide Redox Couple (수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과)

  • Chu, Cheonho;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.847-852
    • /
    • 2019
  • In this study, the effect of additives on the performance of aqueous organic redox flow battery (AORFB) using quinoxaline and ferrocyanide as active materials in alkaline supporting electrolyte is investigated. Quinoxaline shows the lowest redox potential (-0.97 V) in KOH supporting electrolyte, while when quinoxaline and ferrocyanide are used as the target active materials, the cell voltage of this redox combination is 1.3 V. When the single cell tests of AORFBs using 0.1 M active materials in 1 M KCl supporting electrolyte and Nafion 117 membrane are implemented, it does not work properly because of the side reaction of quinoxaline. To reduce or prevent the side reaction of quinoxaline, the two types of additives are considered. They are the potassium sulfate as electrophile additive and potassium iodide as nucleophilie additive. Of them, when the single cell tests of AORFBs using potassium iodide as additive dissolved in quinoxaline solution are performed, the capacity loss rate is reduced to $0.21Ah{\cdot}L^{-1}per\;cycle$ and it is better than that of the single cell test of AORFB operated without additive ($0.29Ah{\cdot}L^{-1}per\;cycle$).

Study on the Development of Hybrid NMP Recovery System for Recovering the Used NMP in Lithium Ion Battery Cathode Manufacturing Process (리튬이온전지 양극제조 공정에서 사용된 NMP를 회수하기 위한 하이브리드형 NMP 회수시스템 개발에 관한 연구)

  • Hwang, Soon Ho;Nam, Seung Beak;Kim, Dong-Kwon;Kim, Yang Jun;Kang, Sung Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.289-296
    • /
    • 2016
  • The availability of NMP, a solvent used in the manufacturing process of cathode material for lithium ion battery, depends on importation, and the price remains high because of the monopoly of BASF and ISP. For these reasons, most Lithium ion battery manufacturers reuse NMP after recovering it from the exhaust air in the drying process. In Korea, absorption method is mainly used for recovering NMP from the absorption tower using the hydrophilicity of NMP. However, this system has a few disadvantages, such as low purity (80%) of the recovered NMP and 100% emission due to high water content of the treated gas. In this study, we develop a hybrid NMP recovery system by combining cooling condensation method with concentration method, by which it is possible to obtain an NMP recovery rate of 99.6%, and a high purity (96.1%) of the recovered NMP.

Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2 (리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.592-597
    • /
    • 2014
  • The graphite/$SiO_2$ composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite's electrochemical characteristics. The prepared graphite/$SiO_2$ composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/$SiO_2$ as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes ($LiPF_6$, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/$SiO_2$ electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.

A Study on the Separation of Mercury from Spent Mercury Batteries (단추형 폐수은 전지로부터 수은 분리에 관한 연구)

  • 손정수;박경호
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 1994
  • Mercury in spent button type batteries can be separated and recovered with vacuum distillation method. It was found that mercury in the battery began to distill at $150^{\circ}C$ and organic substanced like a packing material was decomposed at$ 300^{\circ}C$. More than 99.9% of mercury contained in the battery was distiled and separated at about $250^{\circ}C$ and 20 torr with 8 hours' reaction time. The dissolution tests of the residue after distillation showed that mercury concentration in the solution were lower than 5 ppb and this values satisfied the environ-mental condition. Also as the furnace heating rate was above $15^{\circ}C$/min, it was found that the spent battery was destroyed because of increased pressure in the battery inside.

  • PDF

Characteristics of Lithium Secondary Batteries Using Li Salt-Organic Electrolyte as Function of Temperature (온도에 따른 리튬염 유기전해액 리튬이차전지의 특성)

  • Doh, Chil-Hoon;Shim, Eun-Gi;Moon, Seong-In;Yun, Mun-Soo;Yeom, Dale;Roh, Jae-Ho;Hwang, Young-Gi
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.99-105
    • /
    • 2002
  • This study investigated characteristics of ICR18650 batteries with different electrolyte compositions in the range of $80^{\circ}C\~-30^{\circ}C$. ICR18650 cells using $1M\;LiPF_6,\;EC:\;DEC:\;DMC(3:5:5)\;and\; 1M\;LiPF_6,\;EC:\;DEC:\;DMC:\;EMC(3:5:4:1)$ electrolyte systems, which DMC and EMC solvent were added in $1M\;LiPF_6,\;EC:\;DEC$ electrolytes have high specific energy in the wide range of temperature. The specific energy of ICR18650 batteries using $1M\;LiPF_6,\;EC:\;DEC:\;DMC(3:5:5)\;and\; 1M\;LiPF_6,\;EC:\;DEC;\:\;DMC:\;EMC(3:5:4:1)$ electrolyte at $-30^{\circ}C\;was\;64\%\;and\;59\%$ of room temperature$(25^{\circ}C)$, respectively.