DOI QR코드

DOI QR Code

The Effect of Additives on the Performance of Aqueous Organic Redox Flow Battery Using Quinoxaline and Ferrocyanide Redox Couple

수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과

  • Chu, Cheonho (Graduate school of Energy and Environment, Seoul National University of Science and Technology) ;
  • Lee, Wonmi (Graduate school of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate school of Energy and Environment, Seoul National University of Science and Technology)
  • 추천호 (서울과학기술대학교 에너지환경대학원) ;
  • 이원미 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Received : 2019.07.18
  • Accepted : 2019.08.24
  • Published : 2019.12.01

Abstract

In this study, the effect of additives on the performance of aqueous organic redox flow battery (AORFB) using quinoxaline and ferrocyanide as active materials in alkaline supporting electrolyte is investigated. Quinoxaline shows the lowest redox potential (-0.97 V) in KOH supporting electrolyte, while when quinoxaline and ferrocyanide are used as the target active materials, the cell voltage of this redox combination is 1.3 V. When the single cell tests of AORFBs using 0.1 M active materials in 1 M KCl supporting electrolyte and Nafion 117 membrane are implemented, it does not work properly because of the side reaction of quinoxaline. To reduce or prevent the side reaction of quinoxaline, the two types of additives are considered. They are the potassium sulfate as electrophile additive and potassium iodide as nucleophilie additive. Of them, when the single cell tests of AORFBs using potassium iodide as additive dissolved in quinoxaline solution are performed, the capacity loss rate is reduced to $0.21Ah{\cdot}L^{-1}per\;cycle$ and it is better than that of the single cell test of AORFB operated without additive ($0.29Ah{\cdot}L^{-1}per\;cycle$).

본 연구에서는 퀴노잘린(quinoxaline)과 페로시아나이드(ferrocyanide)를 활물질로 활용한 알칼리 전해질 기반 수계 유기 레독스 흐름전지에 대해 다양한 첨가제를 적용하여 성능을 비교하는 실험을 진행하였다. 퀴노잘린(quinoxaline)의 경우 염화칼륨(KCl) 전해질보다는 수산화칼륨(KOH) 전해질에서의 레독스 전위(-0.97 V)가 더 작은 위치에 있으며, 이에 따라 KOH 전해질에 대해 페로시아나이드와 조합을 이루었을 때, 셀 전압 값은 1.3 V로 높게 나타났다. 상용 양이온 교환막 중 하나인 Nafion 117 멤브레인을 사용하였을 때, 퀴노잘린(quinoxaline)의 부반응 현상을 반전지 상에서 관찰할 수 있었으며, 이에 따라 충방전 자체가 잘 되지 않는 문제점이 있다. 따라서, 문제점이 되는 퀴노잘린(quinoxaline)의 부반응을 해결하기 위해 친전자체와 친핵체 중 하나인 포타슘설페이트($K_2SO_4$)와 포타슘아이오다이드(KI)를 사용하였으며, 포타슘아이오다이드(KI)를 사용하였을 때, 용량 손실율 측면에서 포타슘 아이오다이드(KI)를 첨가제로 넣지 않았을 때($0.29Ah{\cdot}L^{-1}per\;cycle$) 보다 더 낮은 용량 손실율($0.21Ah{\cdot}L^{-1}per\;cycle$)로 더 높은 용량 유지율을 보였다.

Keywords

References

  1. Ryu, J. H., "Operation Planning of Energy Storage System Considering Multiperiod Energy Supplies and Demands," Korean J. Chem. Eng., 35, 328-336(2018). https://doi.org/10.1007/s11814-017-0273-0
  2. Shabanian, S. R., Edrisi, S. and Khoram, F. V., "Prediction and Optimization of Hydrogen Yield and Energy Conversion Efficiency in a Non-catalytic Filtration Combustion Reactor for Jet A and Butanol Fuels," Korean J. Chem. Eng., 34, 2188-2197(2017). https://doi.org/10.1007/s11814-017-0134-x
  3. Lim, J. E. and Kim, J. K., "Optimization of Electrolyte and Carbon Conductor for Dilithium Terephthalate Organic Batteries," Korean Chem. Eng., 35, 2464-2467(2018). https://doi.org/10.1007/s11814-018-0152-3
  4. Lim, W. G., Jo, C., Lee, J. and Hwang, D. S., "Simple Modification with Amine-and Hydroxyl-group Rich Biopolymer on Ordered Mesoporous Carbon/sulfur Composite for Lithium-sulfur Batteries," Korean J. Chem. Eng., 35, 579-586(2018). https://doi.org/10.1007/s11814-017-0302-z
  5. Lee, J. and Moon, J. H., "Spherical Graphene and Si Nanoparticle Composite Particles for High-performance Lithium Batteries," Korean J. Chem. Eng., 34, 3195-3199(2017). https://doi.org/10.1007/s11814-017-0226-7
  6. Jung, M., Lee, W., Noh, C., Konovalova, A., Yi, G. S., Kim, S., Kwon, Y. and Henkensmeier, D., "Blending Polybenzimidazole with an Anion Exchange Polymer Increases the Efficiency of Vanadium Redox Flow Batteries," J. Memb. Sci., 580, 110-116(2019). https://doi.org/10.1016/j.memsci.2019.03.014
  7. Jung, H. Y., Cho, M. S., Sadhasivam, T., Kim, J. Y., Roh, S. H. and Kwon, Y., "High Ionic Selectivity of Low Permeable Organic Composite Membrane with Amphiphilic Polymer for Vanadium Redox Flow Batteries," Solid State Ion., 324, 69-76(2018). https://doi.org/10.1016/j.ssi.2018.06.009
  8. Struzynska-Piron, I., Jung, M., Maljusch, A., Conradi, O., Kim, S., Jang, J. H., Kim, H., Kwon, Y., Nam, S. W. and Henkensmeier, D., "Imidazole Based Ionenes, Their Blends with PBI-OO and Applicability as Membrane in a Vanadium Redox Flow Battery," Eur. Polym. J., 96, 383-392(2017). https://doi.org/10.1016/j.eurpolymj.2017.09.031
  9. Jung, H. Y., Jeong, S. and Kwon, Y., "The Effects of Different Thick Sulfonated Poly(ether ether ketone) Membranes on Performance of Vanadium Redox Flow Battery," J. Electrochem. Soc., 163, A5090-A5096(2016). https://doi.org/10.1149/2.0121601jes
  10. Jung, M., Lee, W., Krishnan, N. N., Kim, S., Gupta, G., Komsiyska, L., Harms, C., Kwon, Y. and Henkensmeier, D., "Porous-Nafion/PBI Composite Membranes and Nafion/PBI Blend Membranes for Vanadium Redox Flow Batteries," Appl. Surf. Sci., 450, 301-311(2018). https://doi.org/10.1016/j.apsusc.2018.04.198
  11. Noh, C., Jung, M., Henkensmeier, D., Nam, S. W. and Kwon, Y., "Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses," ACS Appl. Mater. Interfaces, 9, 36799-36809(2017). https://doi.org/10.1021/acsami.7b10598
  12. Jeong, S., Kim, L. H., Kwon, Y. and Kim, S., "Effect of Nafion Membrane Thickness on Performance of Vanadium Redox Flow Battery," Korean Chem. Eng., 31, 2081-2087(2014). https://doi.org/10.1007/s11814-014-0157-5
  13. Dai, Y. and Zhu, X., "Improved Dielectric Properties and Energy Density of PVDF Composites Using PVP Engineered $BaTiO_3$ Nanoparticles," Korean J. Chem. Eng., 35, 1570-1576(2018). https://doi.org/10.1007/s11814-018-0047-3
  14. Kim, S. Y. and Kim, H., "Development of Carbon Felt Electrode Using Urea for Vanadium Redox Flow Batteries," Korean J. Chem. Eng. Res., 57, 408-412(2019).
  15. Lee, W., Jo, C., Youk, S., Shin, H. Y., Lee, J., Chung, Y. and Kwon, Y., "Mesoporous Tungsten Oxynitride as Electrocatalyst for Promoting Redox Reactions of Vanadium Redox Couple and Performance of Vanadium Redox Flow Battery," Appl. Surf. Sci., 429, 187-195(2018). https://doi.org/10.1016/j.apsusc.2017.07.022
  16. Noh, C., Lee, C., Chi, W. S., Chung, Y., Kim, J. and Kwon, Y., "Vanadium Redox Flow Battery Using Electrocatalyst Decorated with Nitrogen-Doped Carbon Nanotubes Derived from Metal-Organic Frameworks," J. Electrochem. Soc., 165, A1388-A1399 (2018). https://doi.org/10.1149/2.0621807jes
  17. Lee, W. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple," Korean Chem. Eng. Res., 56, 890-894(2018).
  18. Lee, W., Chung, K. and Kwon, Y., "Performance Evaluation of Aqueous Organic Redox Flow Battery using Anthraquinone and Benzoquinone Redox Couple with Ammonium Chloride Electrolyte," Korean Chem. Eng. Res., 57, 239-243(2019).
  19. Yang, B., Hoober-Burkhardt, L., Wang, F., Prakash, G. S. and Narayanan, S. R., "An Inexpensive Aqueous Flow Battery for Large-scale Electrical Energy Storage Based on Water-soluble Organic Redox Couples," J. Electrochem. Soc., 161, A1371-A1380(2014). https://doi.org/10.1149/2.1001409jes
  20. Lee, W., Kwon, B. W. and Kwon, Y., "Effect of Carboxylic Acid-doped Carbon Nanotube Catalyst on the Performance of Aqueous Organic Redox Flow Battery Using the Modified Alloxazine and Ferrocyanide Redox Couple," ACS Appl. Mater. Interfaces, 10, 36882-36891(2018). https://doi.org/10.1021/acsami.8b10952
  21. Janoschka, T., Martin, N., Hager, M. D. and Schubert, U. S., "An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System," Angew. Chem. Int. Ed., 55, 14427-14430(2016). https://doi.org/10.1002/anie.201606472
  22. Chang, Z., Henkensmeier, D. and Chen, R., "Shifting Redox Potential of Nitroxyl Radical by Introducing An Imidazolium Substituent and Its Use in Aqueous Flow Batteries," J. Power Sources, 418, 11-16(2019). https://doi.org/10.1016/j.jpowsour.2019.02.028
  23. Chen, Q., Gerhardt, M. R., Hartle, L. and Aziz, M. J., "A Quinone-bromide Flow Battery with 1 W/cm2 Power Density," J. Electrochem. Soc., 163, A5010-A5013(2016). https://doi.org/10.1149/2.0021601jes
  24. Lin, K., Gomez-Bombarelli, R., Beh, E. S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M. J. and Gordon, R. G., "A Redox-flow Battery with an Alloxazine-based Organic Electrolyte," Nat. Energy, 1, 16102(2016). https://doi.org/10.1038/nenergy.2016.102
  25. Agmon, N., "Mechanism of Hydroxide Mobility," Chem. Phys. Lett., 319, 247-252(2000). https://doi.org/10.1016/S0009-2614(00)00136-6
  26. Milshtein, J. D., Su, L., Liou, C., Badel, A. F. and Brushett, F. R. "Voltammetry Study of Quinoxaline in Aqueous Electrolytes," Electrochim. Acta, 180, 695-704(2015). https://doi.org/10.1016/j.electacta.2015.07.063
  27. Luo, J., Sam, A., Hu, B., DeBruler, C., Wei, X., Wang, W. and Liu, T. L., "Unraveling pH Dependent Cycling Stability of Ferricyanide/ferrocyanide in Redox Flow Batteries," Nano Energy, 42, 215-221(2017). https://doi.org/10.1016/j.nanoen.2017.10.057
  28. Badr, M. Z. A., El-Naggar, G. M., El-Sherief, H. A. H., Abdel-Rahman, A. E. S. and Aly, M. F., "Reaction of Quinoxaline Derivatives with Nucleophilic Reagents," Bull. Chem. Soc. Jpn., 56, 326-330(1983). https://doi.org/10.1246/bcsj.56.326
  29. Aleksic, M. M., Pantic, J. and Kapetanovic, V. P., "Evaluation of Kinetic Parameters and Redox Mechanism of Quinoxaline at Glassy Carbon Electrode," Facta Univer. Ser. Phys. Chem. Technol., 12, 55-63(2014). https://doi.org/10.2298/FUPCT1401055A
  30. Nagarajan, R. and Perumal, P. T., "Potassium Hydrogen Sulfate-catalyzed Reactions of Indoles: a Mild, Expedient Synthesis of Bis-indolylmethanes," Chem. Lett., 33, 288-289(2004). https://doi.org/10.1246/cl.2004.288
  31. Mabbott, G. A., "An Introduction to Cyclic Voltammetry," J. Chem. Educ., 60, 697(1983). https://doi.org/10.1021/ed060p697
  32. Randles, J. E. B. and Somerton, K. W., "Kinetics of Rapid Electrode Reactions. Part 3. Electron Exchange Reactions," Trans. Faraday Soc., 48, 937-950(1952). https://doi.org/10.1039/TF9524800937
  33. Dey, A., Karan, S. and De, S. K., "Effect of Nanofillers on Thermal and Transport Properties of Potassium Iodide-polyethylene Oxide Solid Polymer Electrolyte," Solid State Commun., 149, 1282-1287(2009). https://doi.org/10.1016/j.ssc.2009.05.021
  34. Altshuller, A. P., Schwab, C. M. and Bare, M., "Reactivity of Oxidizing Agents with Potassium Iodide Reagent," Anal Chem, 31, 1987-1990(1959). https://doi.org/10.1021/ac60156a030
  35. Chakrabarti, M. H., Dryfe, R. A. W. and Roberts, E. P. L., "Evaluation of Electrolytes for Redox Flow Battery Applications," Electrochim. Acta, 52, 2189-2195(2007). https://doi.org/10.1016/j.electacta.2006.08.052