• Title/Summary/Keyword: Organic agriculture university

Search Result 1,335, Processing Time 0.032 seconds

Growth Characteristics and Nutrient Contents under Dominant Submerged Plants in Flood Control Reservoir around Dongbok Lake (동복호 저수구역내 주요 침수 분포종별 생육 및 영양염류 함량)

  • Seo, Young-Jin;Lee, Jun-Bae;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Choi, Ik-Won;Lim, Byung-Jin;Kim, Sang-Don;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.836-841
    • /
    • 2012
  • Distributions and growth of submerged plants with water level were investigated in a flood control reservoir around Dongbok Lake. In adddition, the total amount of biomass and uptakes of plants per unit area ($m^2$) in the flood control reservoir were investigated. The total vegetation area was $156,871m^2$ in the Dongbok flood control reservoir ($209,160m^2$) before flooding. By July 11, the Dongbok flood control reservoir was flooded during rainy season except for upper area. Dominant plants were CRXDM (Carex dimorpholepis Steud), ECHCF (Echinochloa crusgalli), POLHY (Polygonum hydropiper L) and BROTE (Bromus tectorum L) which occupied 75% of the flood control reservoir. The total amounts of organic matter uptakes per unit area ($m^2$) with distribution rates by CRXDM, ECHCF, POLHY and BROTE under different submerged plants were 65.5, 6.8, 7.0 and 13.0%, respectively. The total amount of nitrogen uptakes per unit area ($m^2$) with distribution rates at different submerged plants were in the order of CRXDM ($1.30g\;m^{-2}$) > POLHY ($0.34g\;m^{-2}$) > BROTE ($0.30g\;m^{-2}$) > ECHCF ($0.25g\;m^{-2}$). The total amounts of phosphorus uptakes per unit area ($m^2$) with distribution rates at different submerged plants were great in the order of CRXDM (51.8%) > BROTE (17.7%) > POLHY (10.3%) > ECHCF (9.6%). Thus, the results of this study suggest that O.M, T-N and T-P by submerged plants in Dongbok Lake were strongly influenced at water quality in flood control reservoir.

Apoptosis of Human Jurkat T Cells Induced by the Methylene Chloride Extract from the Stems of Zanthoxylum schinifolium is Associated with Intrinsic Mitochondria-Dependent Activation of Caspase Pathway (인체 급성백혈병 Jurkat T 세포에 있어서 Zanthoxylum schinifolium 줄기의 methylene chloride 추출물에 의해 유도되는 세포자살기전 규명)

  • Jun, Do-Youn;Woo, Mi-Hee;Park, Hae-Sun;Kim, Jun-Seok;Rhee, In-Koo;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1499-1506
    • /
    • 2008
  • To examine antitumor activity of the edible plant Zanthoxylum schinifolium, the cytotoxic effect of various organic solvent extracts of its stems on human acute leukemia Jurkat T cells was investigated. Among these extracts such as methanol extract (SS-7), methylene chloride extract (SS-8), ethyl acetate extract (SS-9), n-butanol extract (SS-10), and residual fraction (SL-11), SS-8 exhibited the most cytotoxic activity against Jurkat T cells. The methylene chloride extract (SS-8) possessed the apoptogenic activity capable of inducing sub-G1 peak along with apoptotic DNA fragmentation in Jurkat T cells. Western blot analysis revealed that SS-8 induced apoptosis via mitochondrial cytochrome c release into cytoplasm, subsequent activation of caspase-9 and caspase-3, and cleavage of PARP, which could be blocked by overexpression of Bcl-xL. Jurkat T cell clone I2.1 $FADD^{-/-}$) and Jurkat T cell clone I9.2 (caspase-$8^{-/-}$ were as sensitive as was the wild-type Jurkat T cell clone A3 to the cytotoxic effect of SS-8, suggesting no contribution of Fas/FasL system to the SS-8-mediated apoptosis. The GC-MS analysis of SS-8 showed that it was composed of 16 ingredients including 9,12-octadecanoic acid (18.62%), 2,4-dihydro-5-methyl-4- (1-methylethylidene)- 2-(4-nitrophenyl)-3H- pyrazol-3-one (14.97%), hexadecanoic acid (14.23%), (z,z)-6,9-pentadecadien- 1-ol (13.73%), 5,6-dimethoxy-2-methyl benzofuran (10.95%), and 4-methoxy-2-methylcinnamic acid (5.38%). These results demonstrate that the methylene chloride extract of the stems of Z. schinifolium can induce apoptotic cell death in Jurkat T cells via intrinsic mitochondria-dependent caspase cascade regulated by Bcl-xL without involvement of the Fas/FasL system.

Potential Benefits of Intercropping Corn with Runner Bean for Small-sized Farming System

  • Bildirici, N.;Aldemir, R.;Karsli, M.A.;Dogan, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.836-842
    • /
    • 2009
  • The objectives of this study were to evaluate potential benefits of intercropping of corn with runner bean for a smallsized farming system, based on land equivalent ratio (LER) and silage yield and quality of corn intercropped with runner bean (Phaseolus vulgaris L.), in arid conditions of Turkey under an irrigation system. This experiment was established as a split-plot design in a randomized complete block, with three replications and carried out over two (consecutive) years in 2006 and 2007. Seven different mixtures (runner bean, B and silage corn sole crop, C, 10% B+90% C, 20% B+80% C, 30% B+70% C, 40% B+60%C, and 50% B+50%C) of silage corn-runner bean were intercropped. All of the mixtures were grown under irrigation. The corn-runner bean fields were planted in the second week of May and harvested in the first week of September in both years. Green beans were harvested three times each year and green bean yields were recorded each time. After the 3rd harvest of green bean, residues of bean and corn together were randomly harvested from a 1 $m^{2}$ area by hand using a clipper when the bean started to dry and corn was at the dough stage. Green mass yields of each plot were recorded. Silages were prepared from each plot (triplicate) in 1 L mini-silos. After 60 d ensiling, subsamples were taken from this material for determination of dry matter (DM), pH, organic acids, chemical composition, and in vitro DM digestibility of silages. The LER index was also calculated to evaluate intercrop efficiencies with respect to sole crops. Average pH, acetic, propionic and butyric acid concentrations were similar but lactic acid and ammonia-N levels were significantly different (p<0.05) among different mixtures of bean intercropped with corn. Ammonia-N levels linearly increased from 0.90% to 2.218 as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio. While average CP content increased linearly from 6.47 to 12.45%, and average NDF and ADF contents decreased linearly from 56.17 to 44.88 and from 34.92 to 33.51%, respectively, (p<0.05) as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, but DM and OM contents did not differ among different mixtures of bean intercropped with corn (p>0.05). In vitro OM digestibility values differed significantly among bean-corn mixture silages (p<0.05). Fresh bean, herbage DM, IVOMD, ME yields, and LER index were significantly influenced by percentage of bean in the mixtures (p<0.01). As the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, yields of fresh bean (from 0 to 24,380 kg/ha) and CP (from 1,258.0 to 1,563.0 kg/ha) and LER values (from 1.0 to 1.775) linearly increased, but yields of herbage DM (from 19,670 to 12,550 kg/ha), IVOMD (from 12,790 to 8,020 kg/ha) and ME (46,230 to 29,000 Mcal/ha) yields decreased (p<0.05). In conclusion, all of the bean-corn mixtures provided a good silage and better CP concentrations. Even though forage yields decreased, the LER index linearly increased as the percentage of bean increased in the mixture up to a 50:50 seeding ratio, which indicates a greater utilization of land. Therefore, a 50:50 seeding ratio seemed to be best for optimal utilization of land in this study and to provide greater financial stability for labor-intensive, small farmers.

Spatio-temporal Variations in the Dynamics and Export of Large Wood in Korean Mountain Streams (우리나라 산지계류에 있어서 유목 동태의 시.공간적 다양성과 그에 따른 유출 특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Suk Woo;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.333-343
    • /
    • 2012
  • In-stream large wood (LW) has a critical impact on the geomorphic characteristics relevant to ecosystem management and disaster prevention, yet relatively little is known about variations in its dynamics and subsequent export on the watershed-scale perspective in Korea. Here we review variations in the dynamics and subsequent export of LW as a function of stream size, which is appropriate for Korean mountain streams. In upstream channels with narrow bankfull widths and low stream discharges, a massive amount of LW, resulting from forest dynamics and hillslope processes, may persist for several decades on valley floor. These pieces, however, are eventually transported during infrequent debris flows from small tributaries, as well as peak hydrology in main-stem channels. During the transport, these pieces suffer fragmentation caused by frictions with boulders, and stream bank and bed. Although infrequent, these events can be dominant processes in the export of significant amounts of LW from upstream channel networks. In downstream channels with wide bankfull widths and high stream discharges, LW is dominantly recruited by forest dynamics and bank erosion only at locations where the channel is adjacent to mature riparian forests. With the LW pieces that are supplied from the upstream, these pieces are continuously transported downstream during rainfall events. This leads to further fragmentation of the LW pieces, which increases their transportability. With decreasing stream-bed slope, these floated LW pieces, however, can be stored and form logjams at various depositional sites, which were developed by interaction between channel forms and floodplains. These pieces may decay for decades and be subsequently transported as particulate or dissolved organic materials, resulting in the limitation of LW fluvial export from the systems. However, in Korea, such depositional sites were developed in the extremely limited streams with a large dimension and no flood history for decades, and thus it does not be expected that the reduction of LW export amount, which can be caused by the long-term storage. Our review presents a generalized view of LW processing and is relevant to ecosystem management and disaster prevention for Korean mountain streams.

Analysis of Physiological Activity and Cytotoxicity of Fermented and Hot Water Extracts Using Residues after Onion Harvest (양파 수확 후 잔재물을 이용한 발효 및 열수 추출물의 생리활성과 세포독성 분석)

  • Kim, Tae-Won;Lee, Geon-Hee;Jeon, Byeong-Gyun;Lee, Sung-Ho
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1163-1169
    • /
    • 2018
  • In order to utilize the residue that is thrown away after an onion harvest, we analyzed the physiological activity and cytotoxicity of fermented and hot water extracts of the residue. The pH of the extracts were all acidic, and organic matter content was 0.75% in the fermented extract and four times more than 0.19% in the hot water extract. The contents of nitrogen, phosphoric acid, calcium, and magnesium components, except for the potassium component among macroelements, were higher in the fermented extract than in the hot water extract. The content of iron and silicon among the micro-elements was also higher in the fermented extract than in the hot water extract. In addition, the content of boron was higher in the hot water extract than in the fermented extract. The total polyphenol contents of the fermented and hot water extracts were $16.2{\pm}3.3mg{\cdot}g^{-1}$ and $14.6{\pm}1.4mg{\cdot}g^{-1}$, respectively, which was $1.6mg{\cdot}g^{-1}$ higher in the fermented extract than in the hot water extract. However, the total flavonoid contents of the fermented and hot water extracts were $0.1{\pm}0.1mg{\cdot}g^{-1}$ and $4.8{\pm}0.7mg{\cdot}g^{-1}$, respectively, which was $4.7mg{\cdot}g^{-1}$ higher in the hot water extract than in the fermented extract. DPPH and ABTS radical scavenging ability for antioxidant activity were higher in the hot water extract than the fermented extract. The cytotoxicity of the extract using MTT assay showed cell viability of 101.6% and 97.9% in the fermented and hot water extracts, respectively. It was confirmed that there was no cytotoxicity in either extract.

Framework on Soil Quality Indicator Selection and Assessment for the Sustainable Soil Management (지속가능한 토양환경 관리를 위한 토양질 지표의 선정과 평가체계)

  • Ok, Yong-Sik;Yang, Jae-E.;Park, Yong-Ha;Jung, Yeong-Sang;Yoo, Kyung-Yoal;Park, Chol-Soo
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.93-111
    • /
    • 2005
  • Defining soil quality in scopes and applications is one of the prerequisite for the sustainable management of soil environment to orient researches, strategies and policies. However, definition of soil quality is controversial depending upon a viewpoint of soil science or soil environment. Soil quality can be, irrespective of the disciplines, defined as the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality and promote plant and animal health. Common to all of the soil quality concepts can be summarized as the capacity of soil to function effectively at present and in the future. The OECD includes soil quality as one of the agri-environment indicators. This article intends to i) summarize the current soil quality research, and ii) provide information on protocol of soil quality assessment. A framework for soil quality was divided into three steps: indicator selection as minimum data set (MDS), scoring of the selected indicators, and integration of scores into soil quality index. Korean government suggested possible physical and chemical indicators such as bulk density and organic matter for paddy and upland soils to OECD. The framework of soil quality assessment is not yet implemented in Korea. Countries such as USA, Canada and New Zealand have constructed the framework on soil quality assessment and developed a user-friendly version of soil quality assessment tools to evaluate the integrated effects of various soil management practices. The protocol provided in this review might help policymakers, scientists, and administrators improve awareness about soil quality and understand the way of soil environment management.

  • PDF

Decentralized Composting of Garbage in a Small Composter for Dwelling House I. Laboratory Composting of the Household Garbage in a Small Bin (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화 I. 실험실 조건에서 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.321-337
    • /
    • 1994
  • The garbage from the dwelling houses was composted in two kinds of small composter in laboratory to investigate the possibility of garbage composting. They were general small composters. One (type 1) was insullated but the other (type 2) was not. Because it was found that type 2 was not available for composting under our meteorological conditions through winter experiment, only type 1 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several compounds in compost was evaluated and discussed. The result summarized belows are those taken at the end of the experiment, if the time was not specified. 1) The maximum temperature was $58^{\circ}C$ in spring, $57^{\circ}C$ in summer and $41^{\circ}C$ in winter. This temperature was enough to destroy the pathogen except for winter. 2) The mass was reduced to average 62.5% and the volume reduction was avergae 74%. 3) The density was estimated as 0.7kg/l in spring, 0.8kg/l in summer and 1.1kg/l in winter. 4) The water content was not much changed for composting periods. It had 75.6% in spring and 76.6% in summer and winter. 5) There was a great seasonal difference in pH value. It was reached to pH 6.13 in spring, pH 8.62 in summer and pH 4.75 in winter. 6) The faster organic matter was decomposed, the greater ash content was increased. Cellulose and lignin content were increased, but hemicellulose content was reduced during composting period. 7) Nitrogen contents were in the range of 3.1-5.6% and especially high in summer. After ammonium nitrogen contents were increased at the early stage of composting period, they were decreased. The maximum ammonium nitrogen content was 3,243mg/kg after 2 weeks in winter, 6,053mg/kg after 3 weeks in spring and 30,828mg/kg after 6 weeks in summer. C/N-ratios were not much changed. Nitrification occurred actively in spring and summer. 8) The contents of volatile and higher fatty acids were increased in early stage of composting and reduced after that. The maximum content of total fatty acid was 10.1% after 2 weeks in winter, 5.8% after 2 weeks in spring and 15.7% after 4 weeks in summer. 9) The contents of inorganic compounds were not accumulated as composting was proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.9% $K_2O$, 2.4-4.6% CaO and 0.30-0.80% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.11-28.99mg/kg CN, 24-166mg/kg Zn, 5-129mg/kg Cu, 0.8-14.3mg/kg Cd, 7-42mg/kg Pb, ND-30mg/kg Cr and $ND-132.16\;{\mu}g/kg$ Hg.

  • PDF

Decentralized Composting of Garbage in a Small Composter for Dwelling House;III. Laboratory Composting of the Household Garbase in a Small Bin with Double Layer Walls (가정용 소형 퇴비화용기에 의한 부엌쓰레기의 분산식 퇴비화;III. 실험실조건에서 이중벽 소형 용기에 의한 퇴비화 연구)

  • Seo, Jeoung-Yoon;Joo, Woo-Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.232-245
    • /
    • 1995
  • The garbage from the dwelling house was composted in two kinds of small composter in the laboratory, and the possibility of garbage composting was examined. The composters were general small. One (type 3) was constructed with the double layer walls and the other (type 4) was the same as the first except for being insulated. Because it was found that type 3 was not available for composting under our meteorological conditions through the winter experiment, only type 4 was tested in spring and summer. The experiment was performed for 8 weeks in each season. The seasonal variation of several components in the compost was evaluated and discussed. The results summarized below were those obtained at the end of the experiment, if the time was not specified. 1) The maximum temperature was $43^{\circ}C$ in winter, $55^{\circ}C$ in spring and $56^{\circ}C$ in summer. 2) The mass was reduced to an average of 63% and the volume reduction was an average of 78%. 3) The density was estimated as 1.5 kg/l in winter and 0.8 kg/l in spring and summer. 4) The water content was not much changed during the composting periods. It was 79.3% in winter, 75.0% in spring and 70.0% in summer. 5) After pH value increased during the first week, it decreased until the second week and increased again continuously thereafter. It reached pH 6.19 in winter, pH 7.59 in spring and pH 8.69 in summer. 6) The faster the organic matter was decomposed, the greater the ash content increased. The contents of cellulose and lignin increased, but that of hemicellulose decreased during the composting period. 7) Nitrogen contents were in the range of 3.3-6.8% and especially high in summer. After ammonium contents increased at the early stage of the composting period, they decreased. The maximum ammonium-nitrogen content was 2,404mg/kg after 8 weeks in winter, 12,400mg/kg after 3 weeks in spring and 20,718mg/kg after 3 weeks in summer. C/N-ratios decreased with the lapse of composting time, but they were not much changed. Nitrification occurred actively in summer. 8) The contents of volatile and higher fatty acids increased at the early stage of composting and reduced after that. The maximum content of total fatty acid was 9.7% after 6 weeks in winter, 14.8% after 6 weeks in spring and 15.8% after 2 weeks in summer. 9) The contents of inorganic components were not accumulated as composting proceeded. They were in the range of 0.9-4.4% $P_2O_5$, 1.6-2.4% $K_2O$, 2.2-5.4% CaO and 0.30-0.61% MgO. 10) CN and heavy metal contents did not show any tendency. They were in the range of 0.21-14.55mg/kg CN, 11-166mg/kg Zn, 5-65mg/kg Cu, 0.5-10.8mg/kg Cd, 6- 35mg/kg Pb, ND-33 mg/kg Cr and ND-302.04 g/kg Hg.

  • PDF

Microbiological Studies of Korean Native Soy-sauce Fermentation -A Study on the Microflora Changes during Korean Native Soy-sauce Fermentation- (한국재래식(韓國在來式) 간장의 발효미생물(醱酵微生物)에 관(關)한 연구(硏究)(제2보(第二報)) -한국재래식(韓國在來式) 간장의 담금중(中)에 있어서의 발효미생물군(醱酵微生物群)의 소장(消長)에 관(關)한 연구(硏究)-)

  • Lee, Woo-Jin;Cho, Duck-Hiyon
    • Applied Biological Chemistry
    • /
    • v.14 no.2
    • /
    • pp.137-148
    • /
    • 1971
  • Studies were carried out to investigate the main fermentation microorganisms and their flora changes during Korean native soy-sauce fermentation. Korean native Maeju loaves collected from 5 Do's were separated into surface and inner parts. Four different soy-sauces-the surface part Maeju fermented soy-sauce, the inner part, the surface and inner part combined Maeju fermented soy-sauce, and the semi-Japanese type soy-sauce were fermented and the changes of fermentation microorganism flora and the various chemical components during the period of their fermentations were studied. Besides, 14 home-made soy-sauces collected from 14 different places all over Korea were examined in comparison with the laboratory soy-sauces and to determine the characteristics of Korean native soy-sauce. The results were as follows: 1. The main microorganisms in Korean native soy-sauce fermentation were determined as; Aerobic bacteria: Bacillus subtilis, Bacillus pumilus Lactic acid bacteria: Pediococcus halophilus, Leuconostoc mesenteroides Yeasts: Torulopsis datila, Saccharomyces rouxii 2. Microflora changes during Korean native soy-sauce fermentation were as follows; Aerobic bacteria increased until the 2nd week of fermentation and then gradually decreased. The lactic acid bacteria increased until the 3rd week, after which decreased. When the lactic acid fermentation lowered the pH value to below the 5.4, yeasts were able to grow and participate the fermentation. As the production of organic acids amounted, to a certain height, the growth of all microorganisms lead to the period of decline or death at about the 2nd month of fermentation. After boiling of soy-sauce most microorganisms except a few of Bacillus sp. disappeared. Occosionally yeasts and lactic acid bacteria survived depending upon the composition of soy-sauce. 3. Changes of general chemical components influencing the microflora were investigated for the period of Korean native soy-sauce fermentation. Tetal acidity, salt concentration and total nitrogen were increasing steadily over the entire period of fermentation. pH values were dropping to a certain degree of about 4.5. Salt concentration and pH value seemed to be the important factors influencing the microflora. 4. The microflora were influenced by chemical components of soy-sauce. Aerobic bacteria were able to survive in all soy-sauce as they made spores. Growth of lactic acid bacteria was inhited at 23-26% of salt concentration and pH 4.8. Soy-sauce yeasts started to grow only at pH below 5.4 and seemed to be inhibited at around 26% of salt concentration under pH 4.5-4.7. 5. The open kettle boiling of soy-sauce, the characteristic process of Korean native soy-sauce manufacturing, was effective to sterilize microorganisms, increase the salt concentration, and coagulate proteins. 6. The average viable cell counts of microorganism found in collected samples of home-made Korean native soy-sauces were; Aerobic bacteria: $53{\times}10^2\;cell/ml$ Lactic acid bacteria: 34 cell/ml Yeasts: 14 cell/ml The average values of chemical compositions of samples of home-made Korean native soy-sauce were; Salt concentration: 28.9% pH value: 4.79 Total acidity(lactic acid): 0.91g/100ml Total nitrogen: 1.09g/100ml

  • PDF

Changes of Chemical Components during Fermentation of Pear Wine (배술 발효 과정 중 화학 성분의 변화)

  • Lee, Ka-Soon;Park, Hae-Min;Hong, Jong-Sook;Lee, Gyu-Hee;Oh, Man-Jin
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.991-998
    • /
    • 2009
  • We used pears to manufacture wine, and analyzed changes in pH, acidity and ethanol and sugar content during fermentation. Pear wine with added ginger (to improve quality) did not differ from ginger-free wine in pH or acidity level. The ethanol content of pear wine was the highest (13.0%, v/v) inpear wine with 0.1% (w/v) added ginger compared to pear wine with no ginger, and sensory tests examining taste and color yielded the highest scores for pear wine with 0.2% (w/v) ginger. To assess storage stability, pear wine was treated for 30 minutes at $55^{\circ}C$, $60^{\circ}C$, $65^{\circ}C$, or $70^{\circ}C$. Unheated pear wine showed rapid changes in pH and acidity level after 30 days of storage, whereas pear wine treated for 30 minutes at $60^{\circ}C$ did not show such changes. Total organic acid levels in pear wine increased by 0.71% and 0.89% (v/v), respectively. The free sugar level in pear wine decreased from 12.05% to 3.13% (w/v). Turning to phenolic compounds, caffeic acid, catechin, and epicatechin contents in pears were 1.64, 1.40, and 0.23 mg/100mL, respectively, with diverse compositions. Caffeic acid levels in pear wine decreased sharply to 0.12 mg/100 mL upon fermentation, whereas free catechin inpear wine increased to 1.16 mg/100 mL compared with 0.28 mg/100 mL in pears. Free arbutin increased from 8.34 mg/100 mL in pears to 10.39 mg/100 mL in pear wine. The free amino acid content of pear wine was 118.5 g/100 mL, but the levels of serine, alanine, glutamic acid, and aspartic acid decreased sharply upon fermentation, with corresponding increases in tyrosine, GABA, lysine, and arginine.