• Title/Summary/Keyword: Organic agriculture university

Search Result 1,335, Processing Time 0.03 seconds

Studies on the Composition of Forest Vegetation and the Contents of Polluted Materials in the Needles in an Air Polluted Area (대기오염지역(大氣汚染地域)의 삼림식생구조(森林植生構造)와 엽내오염물질(葉內汚染物質) 함량(含量)에 관한 연구(硏究))

  • Kim, Jong Kab;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.4
    • /
    • pp.360-371
    • /
    • 1989
  • This study was performed to investigate effects of air pollution on the Pinus thunbergii forests in Onsan industrial districts, and environmental factors, contents of soluble sulfur in needles, and composition of sorest vegetation were examined. The results obtained in this study were summarized as follows ; 1. The pH of soils, organic matter and total N were low near the source of air pollutants, and sulfur contents in the soils was high in general. Especially there was significant correlation between the sulfur contents in the soil and pH at 1% level. 2. The contents of soluble sulfur in needles ranged from 0.13% to 0.25% and were generally high, and plot 2 and 3 were the highest of all. 3. In the number of species, 7 species appeared in plot 3 and 20 species in plot 7, and they were low near the source of air pollutants. Total number of individuls, species diversity and evenness increased with in creasing distance from the source of air pollutants. 4. There were significant correlations between the contents of soluble sulfur in needles and the number of species and species diversity at 5%, 1% level, respectively. 5. Importance value of each species was low near the source of air pollutants but Quercus species showed high values in all plots. 6. On these studied plots, Pinus thunbergii, Quercus serrata and smilax china were tolerant, and Rhododendron mucronulatum, Rhododendron yedoense var. poukhanense, Platycarya strobilacea and Lespedeza maritima were sensitive to air pollution.

  • PDF

Phosphate solubilizing effect by two paraburkholderia bacteria Isolated from button mushroom medium (양송이배지로부터 분리한 두 Paraburkholderia 속 세균에 의한 인산가용화 효과)

  • Yu, Hye-Jin;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.17 no.2
    • /
    • pp.64-69
    • /
    • 2019
  • The present study was conducted to investigate the synergistic effects caused by single and co-inoculation of the phosphate solubilizing bacteria (PSB), Paraburkholderia phenazinium YH3 and Paraburkholderia metrosideri YH4. Phosphate solubilization was assessed by measuring the phosphorus contents for 7 days in a single and co-inoculation medium. Co-inoculation of the two strains was found to release the highest content of soluble phosphorus ($1,250{\mu}g\;mL^{-1}$) into the medium, followed by the single inoculation of P. metrosideri YH4 ($1196.59{\mu}g\;mL^{-1}$) and P. phenazinium YH3 ($994.34{\mu}g\;mL^{-1}$). The highest pH reduction, organic acid production and glucose consumption was also observed in the co-inoculation medium of the two strains. A plant growth promotion bioassay revealed that co-inoculation with the two strains enhanced the growth of romaine lettuce more than single inoculation with either of the two strains (28.5% for leaf and 16.6% for root). Although there was no significant difference between single and co-inoculation of bacterial strains in terms of phosphorous release and plant growth, the synergistic effects of co-inoculation with PSB could be beneficial for crop growth.

Monitoring of Working Environment Exposed to Particulate Matter in Greenhouse for Cultivating Flower and Fruit (과수 및 화훼 시설하우스 내 작업자의 미세먼지 노출현황 모니터링)

  • Seo, Hyo-Jae;Kim, Hyo-Cher;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • With the wide use of greenhouses, the working hours have been increasing inside the greenhouse for workers. In the closed ventilated greenhouse, the internal environment has less affected to external weather during making a suitable temperature for crop growth. Greenhouse workers are exposed to organic dust including soil dust, pollen, pesticide residues, microorganisms during tillage process, soil grading, fertilizing, and harvesting operations. Therefore, the health status and working environment exposed to workers should be considered inside the greenhouse. It is necessary to secure basic data on particulate matter (PM) concentrations in order to set up dust reduction and health safety plans. To understand the PM concentration of working environment in greenhouse, the PM concnentrations were monitored in the cut-rose and Hallabong greenhouses in terms of PM size, working type, and working period. Compare to no-work (move) period, a significant increase in PM concentration was found during tillage operation in Hallabong greenhouse by 4.94 times on TSP (total suspended particle), 2.71 times on PM-10 (particle size of 10 ㎛ or larger), and 1.53 times on PM-2.5, respectively. During pruning operation in cut-rose greenhouse, TSP concentration was 7.4 times higher and PM-10 concentration was 3.2 times higher than during no-work period. As a result of analysis of PM contribution ratio by particle sizes, it was shown that PM-10 constitute the largest percentage. There was a significant difference in the PM concentration between work and no-work periods, and the concentration of PM during work was significant higher (p < 0.001). It was found that workers were generally exposed to a high level of dust concentration from 2.5 ㎛ to 35.15 ㎛ during tillage operation.

Studies on the Utilization of Exothermic Heat Composting during Winter Season (동계(冬季) 퇴비부숙열(堆肥腐熟熱) 이용(利用)에 관(關)한 연구(硏究))

  • Kim, Sung-Pil;Park, Young-Dae;Joo, Young-Hee;Uhm, Dae-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.283-288
    • /
    • 1984
  • This study was conducted to evaluate the characteristics of exothermic heat and compost generated from decomposition of organic wastes composts were piled up with various sources of raw materials of rice straw, rice husk, human and animal wastes. The duration of generated exothermic heat during compositing process was longer in mixture piles of rice straw/rice husk ratio of 1:1 compared to rice straw alone. Temperature in compost piles added with phosphate as fused superphosphate fertilizer was rapidly increased at the earlier stage of composting and gradually decreased in 30 days compared to the check. pH of compost showed 5.5 at initial piling, however, its peak appeared 8.8 in 10 days with rapidly increasing temperature of compost and maintained around 8.3 after one month. Compost of mixture of rice straw and chicken droppings maintained temperature ranges of 30 to $65^{\circ}C$ for 39 days, compost of rice straw, rice husk and chicken droppings for 69 days, piles of rice straw, rice husk and hog manure for 56 days, mixture of rice straw, rice husk and cow manure for 66 days and compost of rice straw, rice husk and human wastes for 21 days.

  • PDF

Studies on the Adsorption and Desorption of Cs137 from Paddy Soil (답토양(畓土壤)에서 Cesium-137 흡(吸)·탈착(脫着)에 관(關)한 연구(硏究))

  • Kim, Jae-Sung;Lim, Soo-Kil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.115-121
    • /
    • 1986
  • This experiment was conducted to examined the effects of the physico-chemical and mineral-logical properties of paddy soil on the desorption of $Cs^{137}$ from radionuclide, $Cs^{137}$ absorbed soils. 1. Adsorption of $Cs^{137}$ by paddy soil was very much and exchangeable fraction of $Cs^{137}$ extracted by ammonium acetate was very high compared to the water soluble fraction. Exchangeable fraction of $Cs^{137}$ in paddy soil decreased with the increase of potassium application and increased proportionally with the increase of $Cs^{137}$ treatment. 2. The distribution of several forms of $Cs^{137}$ in soils depend on the soil type. Average-distribution rates of water soluble, exchangeable and non-exchangeable fractions of $Cs^{137}$ in soils were 5.9%, 17.1% and 77.0%, respectively. 3. The desorption of $Cs^{137}$ from adsorbed soils decreased with increase of pH and exchangeable cations of the soils, but it increased as organic matter and clay content increase in soil. 4. Non-exchangeable adsorption of $Cs^{137}$ was high in the soils of which both Illite and Vermiculite were dominant.

  • PDF

Growth Promotion of Tobacco Plant by 3-hydroxy-2-Butanone from Bacillus vallismortis EXTN-1

  • Ann, Mi Na;Cho, Yung Eun;Ryu, Ho Jin;Kim, Heung Tae;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.388-393
    • /
    • 2013
  • It has been well documented that Bacillus vallismortis strain EXTN-1, a beneficial rhizosphere bacterium, could enhance plant growth and induce systemic resistance to diverse pathogens in plants. However, the molecular mechanisms for how the EXTN-1 promote plant growth and induce resistances to diverse pathogens. Here, we show that 3-Hydroxy-2-butanone, a volatile organic compound (VOCs) emitted from the EXTN1, is a key factor for the bacteria-mediated beneficial effects on plant growth and defense systems. We found that the presence of volatile signals of EXTN-1 resulted in growth promotion of tobacco seedlings. The identification and analysis of EXTN-1-secreted volatile signals by solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) indicated that a 3-hydroxy-2-butanone could provide not only the plant growth promotion, but also higher resistance against Pectobacterium carotovorum SCC1. These results suggest that a volatile compound released from EXTN-1 enhances the plant growth promotion and immunity of plants.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Application of Some Soil Amendment Materials to Sandy Soil and the Growth of Rice Plant (사질답(砂質畓) 토양(土壤)에서 수도생육및 수량(收量)에 미치는 토양개량제의 효과)

  • Kim, Chang-Bae;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 1981
  • This study was conducted to evaluate the effects of application of several soil amendment materials to an alluvial sandy soil on the rice growth and yield during the 1979. The materials used were the combinations of rice straw, rice hull, silicate fertilizer, red earth and zeolite. The results obtained were summarized as follows : 1. The application of soil amendment materials considerably increased the number of tillers, plant height and dry matter of rice plant. Particularly, the zeolite treated plot resulted in much better growth in the late stage rather than in the early stage. 2. The plots treated with silicate fertilizer, rice hull and zeolite significantly increased the rice yield and so did those with red earth statistically at 5 % level. However, it was not significant with rice straw. 3. By the application of these materials, the silica content in rice plant was continuously increased untill the heading stage, the nitrogen content was high at the maximum tillering stage and the panicle initiating stage and the phosphorus content was high at panicle initiating stage, which were censidered to be the factors of yield increase. However, in the straw treated plot, the contents of nitrogen, phosphorous and potassium were high, while the silica content was low in rice plant. 4. Further, soil pH, C. E. C., content s of organic matter and silicate in soil treated with those materials were increased after experiment. compared with in the soil before experiment.

  • PDF

Growth Factors of Hyphal Anastomosis Groups of Rhizoctonia solani Kuhn I. Effects of Temperature, pH, Carbon and Nitrogen Sources (Rhizoctonia solani의 균사융합군별 생장요인 I. 온도, PH, 탄소원 및 질소원의 영향)

  • Kim Hyung Moo
    • Korean Journal Plant Pathology
    • /
    • v.1 no.1
    • /
    • pp.72-78
    • /
    • 1985
  • The effects of temperature. pH, carbon and nitrogen sources on the growth of Rhizoctonia solani were studied by using five hyphal anastomosis groups(four cultural types, 7 isolates) of the fungus. The ranges of optimum temperature were $20^{\circ}C$ in the AG 2-1, AG 2-2 and AG 4, and $25^{\circ}C$ in the AG 1-IA, AG 1-IB, AG 3, AG 5. The optimum pH for the mycelial growth was 6-7 in the fungus. Glucose in the AG 1-lA, AG 1-IB, AG 2-2, AG 3 and AG 5, sucrose in the AG 2-1 and fructose in the AG 4 were the most effective for the mycelial growth, but glycerine, cellulose and lactose were not effectively utilized as nutrients. $Ca(NO_3)_2$ in the AG 1-IA, AG 1-IB and AG 4, asparagine in the AG 2-1, $KNO_3$ in the AG 2-2 and $NaNO_3$ in the AG 5 were the best nitrogen sources for the mycelial growth, but $NH_4NO_3$ was not easily utilized by the fungus. Nitrate and organic nitrogens for the fungal growth were utilized better than ammonium nitrogen.

  • PDF

Insect Pest Resistance to Insecticides and Future Researches (해충의 살충제저항성과 금후대책)

  • Choi Seung Yoon
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.98-105
    • /
    • 1983
  • The rapid increase in cases of insect resistance to insecticides indicates that the contribution of present chemical control practices inevitably leads to exhaustion of available insecticide resources against key insect species. Now the problem of insecticide resistance exists worldwide among insects and mites affecting field crops and animals including human beings, ranging from minimal or absent in some developing countries, where use of insecticides has been low, to extremely severe in many developed countries. Since the occurrence of insect resistance to insecticides was firstly recognized in 1908, the increase in recent decades has been almost linear and now the number of species of insects and acarines in which resistant strains have evolved have been increased to a total of 432. Of these, $261(60\%)$ are agricultural importance and $171(40\%)$ of medical/veterinary importance. The phenomenon of insecticide resistance is asserting itself as the greatest challenge to effective chemical control of many important insect pests. Resistance of insects to insecticides has a history of nearly 80 years, but its greatest increase and its strongest impact have occurred during the last 40 years following the discovery and extensive use of synthetic organic insecticides and acaricides. The impact of resistance should be considered not only in terms of greater cost of pest control due to increased dosages and number of applications but also in terms of the ecological disruption of pest-beneficial species density relationships, the loss of investment in the development of the insecticides concerned, and socio-economic disruption in agricultural communities. Despite its grave economic consequences, the phenomenon of insecticide resistance has received surprisingly little attention in Korea. Since the study of insecticides started firstly in 1963, many entomologists have been concerned with this study. According to their results, some of the rice pests and some of the mites on orchard trees, for example, have developed worrisome level of resistance in several areas of this peninsula. With many arthropods, considerable advances in the developed countries have been made in the study of the biochemical and physiological mechanisms of resistance. Progress involves the biochemical characteristics of specific defense mechanisms, their genetics, interactions, and their quantitative and qualitative contribution to resistance. But their studies arc still inadequately known and relatively little have been contributed in terms of unique schemes of population management in achieving satisfactory pest control. It is apparent that there is no easy solution to resistance as a general phenomenon. For future challenging to effective control of insect pests which are resistant to the insecticides concerned, new insecticide groups with distinctly novel mode of action are urgently needed. It is clear, however, that a great understanding of the factors which govern the intensity of selection of field population for resistance could lead to far more permanently successive use of chemicals within the framework of integrated pest management than heretofore practiced.

  • PDF