• Title/Summary/Keyword: Organic Solvent

Search Result 1,516, Processing Time 0.027 seconds

A Simple, Efficient, Catalyst-Free and Solvent-Less Microwave-Assisted Process for N-Cbz Protection of Several Amines

  • Aouf, Zineb;Mansouri, Rachida;Lakrout, Salah;Berredjem, Malika;Aouf, Nour-Eddine
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.151-156
    • /
    • 2017
  • A simple, green and chemo-selective method for the N-benzyloxycarbonylation of amines, ${\beta}$-amino alcohols, ${\alpha}$-amino esters and sulfonamides has been developed under microwave irradiation. Good to excellent yields of the N-benzyloxycarbamates compounds were obtained in short times without any side products.

Drop formation at submerged nozzles: Comparison of aqueous dispersed and organic dispersed cases for TBP-dodecane and nitric acid system

  • Roy, Amitava;Darekar, Mayur;Singh, K.K.;Shenoy, K.T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.761-768
    • /
    • 2019
  • Understanding the phenomena of formation of single drops is necessary to understand the hydrodynamics in solvent extraction equipment which are used for separation of nuclear materials. In this work, the phenomena of aqueous phase and organic phase drop formation at submerged nozzles are compared by conducting experiments with 30%TBP (v/v) in dodecane as the organic phase and nitric acid as the aqueous phase. Two different nozzles and three different nitric acid concentrations are used. For each nozzle and nitric acid concentration, velocity of the dispersed phase is varied. Drops of aqueous phase formed at downward oriented nozzles submerged in organic phase are observed to be smaller than the drops of organic phase formed at upward oriented nozzles submerged in aqueous phase. Correlations to estimate drop diameter are proposed.

Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 (Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성)

  • Choi, Hye Jung;Hwang, Min Jung;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.603-607
    • /
    • 2016
  • A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.

In the presence of organic solvent stability of CiP [coprinus cinereus peroxidase] (유기용매에서의 CiP [coprinus cinereus peroxidase]의 안정성)

  • Kim, Han-Sang;Cho, Dae-Haeng;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.340-344
    • /
    • 2008
  • Coprinus cinereus peroxidase (CiP) was often used as a catalyst for oxidative polymerization of a variety of phenol derivatives to produce a new class of polyphenols. Economical point of view, to know the mechanism of enzyme deactivation is significantly important because cost of enzyme is critically high. Hydrogen peroxide being used as oxidizing agent induced deactivation of peroxidase by destruction of heme structure. In the presence of hydrogen peroxide the stability of peroxidase was unexpectedly improved by adding organic solvent. Especially 2-propanol significantly improved enzyme stability among tested solvents. Radical scavenging by organic solvents may play a major role in protecting peroxidase from the oxidation of oxidizing radicals.

Temperature, organic solvent and pH stabilization of the neutral protease from Salinovibrio proteolyticus: significance of the structural calcium

  • Asghari, S. Mohsen;Khajeh, Khosro;Dalfard, Arastoo Badoei;Pazhang, Mohammad;Karbalaei-Heidari, Hamid Reza
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.665-668
    • /
    • 2011
  • In order to clarify the impact of Ca-binding sites (Ca1 and 2) on the conformational stability of neutral proteases (NPs), we have analyzed the thermal, pH and organic solvent stability of a NP variant, V189P/A195E/G203D/A268E (Q-mutant), from Salinovibrio proteolyticus. This mutant has shown to bind calcium more tightly than the wild-type (WT) at Ca1 and to possess Ca2. Q-mutant was resisted against autolysis, thermoinactivation and pH denaturation in a Ca-dependent manner and exhibited better activity in organic solvents compared to the WT enzyme. These results imply that Ca1 and Ca2 are important for the conformational stability of NPs.

Effect of Organic Additives on Microstructure and Green Density of Zirconia Granules Using Water Solvent (유기첨가제가 수계에서 제조된 지르코니아 과립의 미세구조 및 성형밀도에 미치는 영향)

  • Jung, Ji-Hwan;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • Spherical-type zirconia granules are successfully fabricated by a spray-drying process using a water solvent slurry, and the change in the green density of the granule powder compacts is examined according to the organic polymers used. Two organic binders, polyvinyl alcohol (PVA) and 2-hydroxyethyl methacrylate (HEMA), which are dissolved in a water solvent and have different degrees of polymerization, are applied to the slurry with a plasticizer (polyethylene glycol). The granules employing a binder with a higher degree of polymerization (PVA) are not broken under a uniaxial press; consequently, they exhibit a poor green density of $2.4g/cm^3$. In contrast, the granule powder compacts employing a binder with a lower degree of polymerization (HEMA) show a higher density of $2.6g/cm^3$ with an increase in plasticizer content. The packing behavior of the granule powders for each organic polymer system is studied by examining the microstructure of the fracture surface at different applied pressures.

A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior (리튬이온전지의 유기용매분해에 따른 SEI film 형성과 전기화학적 거동에 관한 연구)

  • Kim, Min-Seong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M $LiPF_6$ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M $LiPF_6$ DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M $LiPF_6$ EC/DEC(1/2 by vol%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC,DMC and EMC brought the de-decomposition peak of salt anion of $PF_6$ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. $Li/Li^+$). In addition, a kinetics current peak, in which intercalation of Lt is proceeded at 750mV, 450mV(vs. $Li/Li^+$), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance($R_{ct}$) according to the electric potential of $Li^+$ intercalation at 750mV(vs. $Li/Li^+$), which was the same as the resistance ($R_f$) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance($R_p$) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior (리튬이온전지의 유기용매분해에 따른 SEI film형성과 전기화학적 거동에 관한 연구)

  • 김민성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M LiPF$\sub$6/ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M LiPF$\sub$6/DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M LiPF$\sub$6/ EC/DEC(1/2 by vo%%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC, DMC and EMC brought the de-decomposition peak of salt anion of PF$\sub$6/$\^$-/ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. Li/Li$\^$+/\`). In addition, a kinetics current peak, in which intercalation of Li$\^$+/ is proceeded at 750mv, 450mv(vs. Li/Li$\^$+/), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance(R$\sub$ct/) according to the electric potential of Li$\^$+/ intercalation at 750mv(vs. Li/Li$\^$+/), which was the same as the resistance (R$\sub$f/) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance(R$\sub$p/) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

Development for Performance Improving Agent of Penetration in Reinforcing Applied on Concrete (콘크리트 침투강화형 성능개선재 개발)

  • 김도겸;고경택;류금성;김방욱;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.781-786
    • /
    • 2002
  • We develop the performance improving agent of penetration reinforcing applied on concrete by which main components use compounds of metal alkoxide and silicate(Ti). Also, we investigate on the type and amount of organic solvent which need the hydrolysis and water condensation reaction of Ti. The penetration reinforcing agent developed this study can penetrate deeper than 50mm without relation to concrete strength. Also the performance improving agent composed of the combination of Ti and organic solvent A, improve performance in keeping out or removement of deterioration material. waterproof and strength.

  • PDF

Organic Solvent Absorption characteristics of Split-type micro fiber fabrics

  • Lee, Kwang-Ju;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.95-95
    • /
    • 2003
  • In this study, the influences of organic solvent viscosity on absorption properties of split-type micro fiber fabrics is examined with real time absorption measurement device built by our research group recently. And the absorption behavior of these fabrics is analyzed by material, fineness, construction, weight, thickness, and density of fabrics.

  • PDF