• Title/Summary/Keyword: Organic Se

Search Result 601, Processing Time 0.026 seconds

Synthesis of Nanorod g-C3N3/Ag3PO4 Composites and Photocatalytic Activity for Removing Organic Dyes under Visible Light Condition

  • Se Hwan Park;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Nanorod graphitic carbon nitride (g-C3N4) was synthesized by reacting melamine (C3H6N6) with trithiocyanuric acid (C3H3N3S3) in distilled water for 10 h at room temperature. The resulting mixture was calcined at 550℃ for 2 h in an electric furnace under an air atmosphere. Nanorod g-C3N4/Ag3PO4 composites were prepared by adding nanorod graphitic carbon nitride (g-C3N4) powder, silver nitrate (AgNO3), ammonia (NH3·H2O, 25.0-30.0%), and sodium hydrogen phosphate (Na3HPO4) to distilled water. The samples were characterized via X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The photocatalytic activities of the nanorod g-C3N4/Ag3PO4 composites were demonstrated via the degradation of organic dyes, such as methylene blue and methyl orange, under blue light-emitting diode irradiation and evaluated using UV-vis spectrophotometry.

Effects of Daily and Interval Feeding of Sapindus rarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep

  • Wina, Elizabeth;Muetzel, Stefan;Becker, Klaus
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.11
    • /
    • pp.1580-1587
    • /
    • 2006
  • Several researchers have demonstrated that the rumen microbial community rapidly adapts to saponins and proposed interval feeding to prevent this rapid adaptation. An in vivo experiment was carried out to examine the effect of daily versus application every third day (interval feeding) of Sapindus rarak saponins (SE) on rumen fermentation end products, protozoal counts and nutrient digestibility. Thirty sheep were allocated into 5 groups. Sheep were fed daily or every third day with two levels of SE (0.48 and 0.72 g/kg body mass). One group received no saponin and served as control. All sheep received the same diet, a mixture of elephant grass and wheat pollard (65:35 w/w). Independent of the feeding regime and the level of inclusion, the addition of SE decreased protozoal counts and rumen ammonia concentrations (p<0.01). Microbial N supply and N retention were not affected by the high feeding regime. Daily feeding negatively influenced rumen xylanase and cellulase activity, but only when the high level of saponins was fed. However, these negative effects on rumen cell wall degradation were not reflected in decreasing total tract digestibility of the organic matter or the plant cell walls. Our results show that rumen microorganisms do not rapidly adapt to S. rarak saponins.

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection

  • Kim, Gang-Il;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.

Characteristics and Fabrication of Vertical Type Organic Light Emitting Transistors Using n-Type Organic Materials (N형 유기물질을 이용한 세로형 유기 발광트랜지스터의 제작 및 특성에 관한 연구)

  • Oh Se-Young;Kim Hee-Jeong;Jang Kyoung-Mi
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.253-258
    • /
    • 2006
  • We have fabricated vortical type organic thin film transistors (OTFTs) consisting of ITO/n type active material/Al gate/n type active material/Al using F16CuPc, NTCDA, PTCDA and PTCDI C-8. The effect of mobility of n type active materials and thin film thickness on current-voltage (I-V) characteristics and on/off ratios were investigated. The vortical type organic transistor using PTCDI C-8 exhibited low operation voltage and high on-off ratio. In addition, we have investigated the feasibility of application in organic light emitting transistor using light emitting polymer. Especially, the light emitting transistor consisting of ITO/PEDOT-PSS/P3HT/F16CuPc/Al gate/F16CuPc/Al showed the maximum quantum efficiency of 0.054.

A Stable and Efficient Host Material Having Tetraphenylsilane for Phosphorescent Organic Light Emitting Diodes

  • Park, Hyung-Dol;Kang, Jae-Wook;Lee, Deug-Sang;Kim, Ji-Whan;Jeong, Won-Ik;Park, Young-Seo;Lee, Se-Hyung;Go, Kyung-Moon;Lee, Jong-Soon;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.503-505
    • /
    • 2008
  • A host material containing tetraphenylsilane, 9-(4-triphenylsilanyl-(1,1'4,1")-terphenyl-4"-yl)-9H-cabazole (TSTC), was synthesized for green phosphorescent organic emitting diodes. $Ir(ppy)_3$ based OLEDs using TSTC host and DTBT (2,4-diphenyl-6-(4'yl)-1,3,5-triazine) hole blocking layer (HBL) showed the maximum external quantum efficiency of 19.8 %, the power efficiency of 59.4 lm and high operational stability with a half lifetime of 160,000 h at an initial luminance of $100\;cd/m^2$.

  • PDF

Formation and Characterization of Polyvinyl Series Organic Insulating Layers (폴리비닐 계열 유기절연막 형성과 특성평가)

  • Jang Ji-Geun;Jeong Jin-Cheol;Shin Se-Jin;Kim Hee-Won;Kang Eui-Jung;Ahn Jong-Myong;Seo Dong-Gyun;Lim Yong-Gyu;Kim Min-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.39-43
    • /
    • 2006
  • The polyvinyl series organic films as gate insulators of thin film transistor(TFT) have been processed and characterized on the polyether sulphone (PES) substrates . The poly-4-vinyl phenol(PVP) and polyvinyl toluene (PVT) were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series; copolymer PVP(10 wt%), 5wt% cross-linked PVP(10 wt%), copolymer PVP(20 wt%), 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current of 1.2 pA at ${\pm}10V$. The ms value of surface roughness and the capcitance per unit area are 2.41 and $1.76nF/cm^2$ in the case of 10 wt% cross-linked PVP(20 wt%) layer, respectively.

  • PDF

Evaluation of the physical properties of organic fillers made from agricultural byproducts (농업부산물로 제조된 유기충전제의 물리적 특성 평가)

  • Lee, Ji-Young;Lim, Gi-Baek;Kim, Young-Hoon;Lee, Se-Ran;Kim, Man-Young;Kim, Chul-Hwan;Kim, Sun-Young;Kim, Jun-Sik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.34-41
    • /
    • 2013
  • In this study, we investigated the physical properties of powders made from agricultural byproducts, including rice straw, peanut husks, and garlic stems, to manufacture a new organic filler used for making paperboard. These materials were collected individually, and then we measured their chemical compositions. The byproducts were ground with a laboratory grinder and fractionated with 60-, 100-, and 200-mesh sieves to make many grades of organic fillers. After the grinding and fractionation, the yield, mean particle size, and particle size distribution of each grade were measured. Particle shapes were also investigated using a scanning electron microscope. The organic filler made from rice straw had the highest yield of the largest particle size group and higher contents of cellulose and hemicellulose than those made from peanut husks and garlic stems. The rice straw also showed more regular particle shapes and a lower aspect ratio than the other agricultural byproducts.

The Synthesis of Kyotorphin Derivative by $\alpha$-Chymotrypsin ($\alpha$-Chymotrypsin 을 이용한 Kyotorphin 유도체의 합성)

  • Jeon, Yu Jin;Kim, Se Gwon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.449-455
    • /
    • 1994
  • In order to obtain the basic data for synthetic studies of bioactive peptide using enzyme, Kyotorphin(analgesic peptide) derivative was synthesized from Ac-Tyr-OH and $Arg-NH_2$ by $\alpha-chymotrysin$ in two phase system(organic phase and aqueous phase). In effect of organic solvent on Kyotorphin derivative synthesis from Ac-Tyr-OH(10 mM) and $Arg-NH_2$ (20 mM), the synthesis in ethyl acetate system of organic solvents was higher than those in other organic solvents (n-butanol, n-hexane, dichloromethane and chloroform). The optimal conditions for the synthesis are as follows: enzyme conc., 10 ${\mu}M;$ reaction pH, 7.0; reaction temp., $35^{\circ}C$ ; the ratio of organic phase volume/aqueous phase volume $(\alpha)$, 15. Under the optimal conditions, the yield was 70.2%, and the reaction achieved to equilibrium after 24 hrs.

  • PDF

Technical Tasks and Development Current Status of Organic Solar Cells (유기 태양전지의 개발 현황과 기술 과제)

  • Jang, Ji Geun;Park, Byung Min;Lim, Sungkyoo;Chang, Ho Jung
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.434-442
    • /
    • 2014
  • Serious environmental problems have been caused by the greenhouse effect due to carbon dioxide($CO_2$) or nitrogen oxides($NO_x$) generated by the use of fossil fuels, including oil and liquefied natural gas. Many countries, including our own, the United States, those of the European Union and other developed countries around the world; have shown growing interest in clean energy, and have been concentrating on the development of new energy-saving materials and devices. Typical non-fossil-fuel sources include solar cells, wind power, tidal power, nuclear power, and fuel cells. In particular, organic solar cells(OSCs) have relatively low power-conversion efficiency(PCE) in comparison with inorganic(silicon) based solar cells, compound semiconductor solar cells and the CIGS [$Cu(In_{1-x}Ga_x)Se_2$] thin film solar cells. Recently, organic cell efficiencies greater than 10 % have been obtained by means of the development of new organic semiconducting materials, which feature improvements in crystalline properties, as well as in the quantum-dot nano-structure of the active layers. In this paper, a brief overview of solar cells in general is presented. In particular, the current development status of the next-generation OSCs including their operation principle, device-manufacturing processes, and improvements in the PCE are described.

A comparison of Health Hazard Effects by Solvent-based and Water-based Painting materials (유용성 도료와 수용성 도료의 유해성 비교에 관한 연구 (자동차 보수용 도료를 중심으로))

  • Kwon, Eun-Hye;Kim, Gwang-Sik;Oh, Jung-Ryong;Choi, Jung-Keun;Jeong, Yoon-Sok;Lee, You-Jin;Kim, Eun-A;Song, Se-Wook;Jung, Ho-Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.17-25
    • /
    • 2001
  • The purpose of this study is to substitute water-based painting materials for the current solvent-based ones used in motor-repairing process to minimize the exposure of organic solvents to the painters. This study assessed the exposure of organic solvents to the painters using water-based and solvent-based painting materials and compared compositions, painting processes and the health hazards of the application of these alternative painting mate rials. The results of this study are as follows. 1. solvent-based painting materials used in motor-repairing process consist of various organic solvents, which consist primarily of toluene, xylene, ethyl benzene, ethyl methyl benzene, trimethyl benzene, ethyl acetate, butyl acetate, methyl isobutyl ketone, 2-ethoxy ethanol, 2-ethoxy ethyl acetate and toluene-2,4-diisocianate and the others. These organic solvents are known as health-hazardous substances. But water-based painting materials are high-solid, low-solvent one sand consist of such two organic solvents as 2-butoxy ethanol and 2-heptanone and the others. 2. The painters us ing solvent-based painting mate rials in motor-repairing process are exposed to various organic solvents which consist of toluene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, trimethyl benzene, 2-ethoxy ethanol, and 2-ethoxy ethyl acetate. But the painters using solvent-based ones are only exposed to 2-butoxy ethanol and 2-heptanone. 3. By using water-based painting materials in stead of solvent-based painting materials containing health-hazardous organic solvents, the exposure of such organic solvents in the painter's breathing zone can be largely prevented. 4. This study recommends water-based painting materials as substitutes for the current solvent-based ones used in motor-repairing process to minimize the exposure of organic solvents to the painters.

  • PDF