• Title/Summary/Keyword: Organic Livestock

Search Result 562, Processing Time 0.024 seconds

Growth of Seeded Escherichia coli in Rewetted Cattle Waste Compost of Different Stages

  • Hanajima, D.;Kuroda, K.;Fukumoto, Y.;Haga, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.278-282
    • /
    • 2004
  • Compost is used mainly as an organic fertilizer, but it is also used as bedding material for cattle. Dairy cattle have been identified as a main reservoir of pathogenic Escherichia coli O157:H7. Further, E. coli is regarded as an environmental pathogen that causes bovine clinical mastitis. Hence, its growth in compost spread or compost bedding should be avoided. Physical and chemical conditions, available nutrients and microflora in compost change greatly during the composting process. Since pathogen growth in compost seems to be related to these changes, we assessed the possibility of E. coli growth in compost samples collected at 0, 7, 13, 22, 41, 190 and 360 d. Cattle waste composts with and without added tofu residue were collected from static piles and immediately air-dried. Compost samples were inoculated with a pure culture of E. coli, the moisture content was adjusted to 50%, and the samples were incubated for 5 d at $30^{\circ}C$. The numbers of E. coli in compost before and after incubation were determined by direct plating on Chromocult coliform agar. Almost all compost samples supported E. coli growth. Samples collected during or immediately after the thermophilic phase (day 7) showed the highest growth. Growth in samples more than 13 d old were not significantly different from those of aged compost samples. The addition of tofu residue gave a higher growth than its absence in younger samples collected prior to 13 d. To minimize the risk of environmental mastitis, the use of compost in the initial stage of the process is better avoided.

Isolation and Selection of Functional Microbes for Eco-friendly Turfgrass Management in Golf Course from Livestock Manure Compost (친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발)

  • Jeong, Je-Yong;Kim, Young-Sun;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 2017
  • Functional microorganisms decompose various organic matter by enzyme activity and suppress plant disease caused by pathogen. This study was conducted to isolate and select functional microorganisms with protein or carbohydrate degradation activities and antagonistic activity against turfgrass fungal pathogens for eco-friendly turfgrass management in golf course from compost containing livestock manure of poultry or swine. Totally 68 isolates collected from livestock manure compost strains were isolated and tested for their activities of amylase, protease and lipase and antagonistic activities against Rhizoctonia solani AG2-2, R. solani AG1-1, and Sclerotinia homoeocarpa. Among the isolates, 34 strains were selected as functional microbes showing higher activities of amylase and protease. Three isolates of ASC-14, ASC-18, and ASC-35 among the 34 strains were selected as antifungal bacterial strains repressing the above 3 turfgrass fungal pathogens. Analysis results of 16s rRNA gene sequence and phylogenic cluster indicated that ASC-14 and ASC-18 belonged to Bacillus amyloliquefaciens, while ASC-35 was B. subtilis, respectively.

Byproducts from Piggery Wastewater Treatment for the Sustainable Soil Amendment and Crop Production

  • Yang, Jae E.;Kim, Jeong-Je;Shin, Young-Oh;Shin, Myung-Kyo;Park, Yong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.3
    • /
    • pp.140-145
    • /
    • 1999
  • Livestock manure is generally beneficial to soil and crop production when appropriate amount is applied, but excessive application may be detrimental to soil and water environments. A proper protocol of livestock waste treatment is required to manage the quality of soil and water. A trickling filter system using rice straw media was employed to treat piggery wastewater from small-scaled livestock farms as an alternative to the currently available methods. Batches of piggery wastewater were treated with this system, and the byproducts of rice straw media and trickling filtrate were applied to the soil with cultivating rye (Secale cereale L.). Objective of this research was to characterize these byproducts for the sustainable soil amendments and rye production. Both the treated straw medium and filtrate were proven to be effective organic fertilizers for rye plant development, with the enhanced but balanced absorption of nutrients. The synergistic effects of filtrate in addition to straw application did not show, but the filtrate appeared to lead to a higher water content of the plant. No specific nutrient deficiency or toxicity symptom was shown due to the salts derived from the byproducts applied. Chemical parameters of the soil quality were significantly improved with the application of straw medium either with or without the filtrate. Judging from parameters relating to the salt accumulations, such as sodium adsorption ratio (SAR), electrical conductivity (EC), exchangeable sodium percentage (ESP), potassium adsorption ratio (KAR), and residual P concentrations, the byproducts from piggery wastewater exhibited no detrimental effects on soil quality within the ranges of treatments used. In addition to the effectiveness of the rice straw trickling filter system for the small-scaled swine farms, both rice straw medium and filtrate could be recycled for the sustainable soil amendment and plant nutrition.

  • PDF

Analysis of Livestock Resources on NPS Pollution Characteristics by Rainfall Simulation (인공강우를 이용한 축산 자원화물의 비점오염 배출 특성 분석)

  • Won, Chul-Hee;Choi, Yong-Hun;Shin, Min-Hwan;Seo, Ji-Yeon;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.67-74
    • /
    • 2011
  • This research focused on the investigation of runoff and nonpoint sources (NPS) pollution characteristics from small soil box plots treated by livestock waste composts. An indoor rainfall simulation was performed over the plots for 60 minutes. Simulated rainfall intensities were 32.4, 43.2, 50.3 and 57.1 mm/hr respectively. Slope of soil box plots was $10^{\circ}$ and $20^{\circ}$, respectively. Rainfall simulation replicated 5 times and the experiment was conducted every four days five times. As the slope of soil box increased, NPS pollution loads increased. And as rainfall intensity was increased from 32.4 to 57.1 mm/hr, NPS pollution loads gradually increased, too. Discharge of NPS pollution loads was the largest in the first simulation and thereafter decreased gradually. Discharged BOD load to the total applied load from $10^{\circ}$ plots, ranged 0.2 to 0.7 %, was 8.4 to 50.0 % lower than slope $20^{\circ}$ plots. When the application rate increased twice, the increase of pollution load was between 1.7~5.7 times. Analysis of Pearson's correlation coefficient showed that organic matter content in pig compost and NPS pollution loads were correlated well. While under liquid compost application, the correlation coefficients between them were not good. It was concluded that application of livestock resources need to consider long-term weather forecast and if necessary, NPS reduction measures must be preceded in order to reduce NPS pollution discharge.

Soil Nitrogen Mineralization Influenced by Continuous Application of Livestock Manure Composts (가축분퇴비가 연용된 밭 토양에서 잠재적 질소 무기화량 추정)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Yang, Jae-E;Lee, Sang-Min;Shin, Jae-Hun;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.329-334
    • /
    • 2010
  • The characteristics of nitrogen mineralization in upland soil was studied with 27-week incubation at $25^{\circ}C$. The used soils in this experiment were received six kinds of livestock manure compost each year for four years. Six different composts, which were chicken (CHM), pig (PIM), and cow (COM) manure composted without bulking agent, and chicken (CHMS), pig (PIMS), and cow (COMS) manure composted with sawdust as a bulking agent, were selected for this study. The first-order model was fit to the observed mineral nitrogen (N) vs incubation days using a non-linear regression procedure. The soil potential for N mineralization (No) of manure compost (CHM, PIM, and COM) treated soils were higher than those of the manure-sawdust compost (CHMS, PIMS, and COMS) treated soils. The No value of PIM applied soil was 15.0 mg 100 $g^{-1}$, which was the highest value among the treatments. The amount of N mineralized in compost applied soils ranged from 8.1% to 11.9% of the total N content in soils and increased with increasing total N content in soils. The organic matter content in compost applied soils were negatively correlated with No value (r = $-0.69^*$). Therefore, our result indicated that determination of N application rate in livestock manure compost applied soil should be based on total nitrogen content better than soil organic matter content.

Effect of Zeolite and Livestock Manure in Composting Materials on Composting of Seafood Processing Wastewater Sludge (수산가공폐수 슬러지의 퇴비화과정중 zeolite 및 가축분첨가 효과)

  • Lee, Hong-Jae;Cho, Ju-Sik;Park, Hyun-Geoun;Heo, Jong-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.93-100
    • /
    • 2001
  • To study the possibility of agricultural utilization of seafood processing wastewater sludges, the change of temperature, decreasing ratio of weight generation quantity of $CO_2$ and $NH_3$, and contents of inorganic elements for composting by adding different rates of zeolite and livestock manure to seafood processing wastewater sludges were investigated. Changes of temperature, decreasing ratio of total weight and generation quantity of $CO_2$ were not little different with increasing addition rates of zeolite for composting. But the less addition quantity of livestock manure is, the higher were temperature and decreasing ratio weight for composting. Ceneration quantity of $NH_3$ in composting materials as adding zeolite ti 5, 10 and 20% and livestock manure to 50, 65 and 80% were 68, 61 and $46mg/kgvs{\cdot}hr$, respectively, for composting periods. So, $NH_3$ generated little quantity as much as possible addition of zeolite and manure. Contents of T-C and T-N little decreased and C/N ratio little increased after composting than before. Content of $P_2O_5$, $K_2O$, CaO also increased a little, that of MgO is not different and that of Mn decreased very sharply in all conditions after composting than before.

  • PDF

A Study on the Improvement of HACCP Evaluation Items in Small Scale Meat Packaging Plant (소규모 식육포장처리업 HACCP 평가항목 개선 연구)

  • Jung, Sung-Won;Cho, Seok-Hyun;Back, Seung-Hee;Kong, Hong-Sik;Nam, In-Sik
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.437-452
    • /
    • 2019
  • The HACCP evaluation standards for the meat packaging plant are divided into general scale HACCP evaluation standard and small scale HACCP evaluation standard. There are 69 evaluation items in the general scale HACCP evaluation criteria, of which 54 items in the prerequisite management and 15 items in the HACCP management are included. The number of small scale HACCP evaluation items are 20 and about 29% of the general scale HACCP evaluation items. This may not be enough to produce a safety livestock products for the purpose of implementing the HACCP system due to the nature of the meat packaging plant, which does not show much difference in the production process or method of product depending on the scale. To improve the small scale HACCP evaluation standard, the importance of each item was compared with the small scale HACCP evaluation based on the rate of non-compliance and the severity levels in the general scale HACCP evaluation items. As a result of the study, 8 items were derived from the prerequisites management, 2 items were derived from the HACCP management, and some similar evaluation items were grouped together. Finally, 10 items were added to the 20 items of the existing small scale HACCP evaluation items. In this study, study on the safety management of domestic livestock products are continuously carried out, so that it is possible to provide safety livestock products to consumers and contributes to securing competitiveness of domestic livestock industry.

Effect of Food Waste Feed and Probiotics on Growth perfermance and Body Composition in Broiler (남은음식물 사료와 생균제 첨가에 따른 육계의 성장 및 체조성에 미치는 영향)

  • Yang, Chul-Ju;Uuganbayar, D.;Sin, Young-Hwan;Park, Il-Chul;Chung, Il-Byung;Cho, Yung-Mu;Kim, Won-Ho;Nam, Byung-Sub
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.113-121
    • /
    • 2003
  • The objective of this study was to determinate the effect of food waste with probiotic supplemented diets on growth performance and body composition in broiler chicks. One hundred ninety six (Ross 1 day old) broiler chicks were randomly allotted to seven treatments and raised in barely cages. As the results of the experiment the body weight gain was increased significantly in groups fed control+antibiotics supplemented diets (P<0.05), but there were no significant difference in weight gain of the chicks fed diets containing food waste with probiotic and antibiotic supplementations (P>0.05). The feed intake was increased significantly in group fed a diet containing food waste 1.5% with 0.5% probiotic supplementation but it was no significantly different for rest experimental groups (P>0.05). The feed efficiency was reduced significantly in broilers fed food waste with probiotic diets compared to groups fed control and antibiotic supplemented diets (P>0.05). The large intestine weight was increased significantly in broilers fed antibiotic supplemented diet compared to control (P<0.05). The abdominal fat was increased in groups fed diet containing food waste supplementation (P<0.05). The rest of vital organs weights was not affected by additon of food waste and probiotic supplementation in broiler diet (P>0.05).

  • PDF

The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater (가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향)

  • Jang, Jae Kyung;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.578-582
    • /
    • 2015
  • It was investigated whether the removal of nitrogen ions included livestock wastewater were increased by increasing the reaction time of livestock wastewater and microbubbles with catalyst. For this study, the nitrogen reduction system using microbubbles with catalyst was used. The two reactors were consecutively arranged, and the second reactor (Step 2) was located to next the first reactor (Step 1). Each reactor was reacted for 2 hours and air or oxygen as oxidant was fed into the reactor during operation before microbubble device. When oxygen was used, ammonia nitrogen was removed each 18.3% and 52.8% during 2 (only step 1) and 4 (step 1 and step 2) hours reactions. This value was higher than that of when air was fed. When oxygen was used, the longer the reaction time, the ammonia nitrogen removal was higher. The longer the reaction time, the higher the nitrite and nitrate was also removed such as ammonia nitrogen. Also this system was examined whether organic matter removal is effective. The total chemical oxygen demand (TCOD) removal was higher than the soluble chemical oxygen demand (SCOD). Some materials among causing substances COD were difficult to decompose biologically. Therefore, it means that it will be easy to operate the biological processes following step and reduce the concentration of organic contaminants in effluent.

Estimation of Decomposition Capacity for Organic Matter in Tidal Flat Sediments at Saemankeum Area (새만금지역 하구갯벌의 유기물 분해능력 평가)

  • Jong-Gu Kim;Sun-Jae You
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.315-321
    • /
    • 2001
  • This study was conducted to estimate the decomposition capacity for organic matter by microbe of tidal flat sediments (Hajae, Dongjin and Mankyung). The decomposition rate constants (K') have been determined by Thomas slope method and compared with the values of each tidal flats. The decomposition rates of organic matter by microbe were initially very slow, but at the end of 12 hours, very sharply increased. The values of decomposition rate constant for Dongjin, Mankyung and Hajae tidal flat sediment were 1.364$day^{-1}$/, 1.080d$day^{-1}$ and 0.735$day^{-1}$, respectively. The decomposition rate constant of Dongjin tidal flat sediment which affected by livestock wastewater was higher than others. The decomposition quantity (mg/g/day) of organic matter by microbe of tidal flat sediments was 0.4mg/g/day for Dongjin, 0.36mg/g/day for Mankyung and 0.36mg/g/day for Hajae. The average of decomposition quantity was 0.37mg/g/day. To calculate purification capacity (kg/ha) of organic matter by microbe, we applied to two assumption ; 1) biological action by microbe is occur within 0.1cm under surface 2) specific gravity of sediment are 2.5g/$\textrm{cm}^2$. The purification capacity of organic matter by microbe of tidal flat sediment was calculated to 9.25kg/ha. The relationships between decomposition rate constant (K') and ignition loss (I. L), chemical oxygen demand by sediment (CO $D_{sed}$), total carbon(TC), silt and clay as index of organic matter were a high positive($R^2$=0.97~1.00).

  • PDF