Soil Nitrogen Mineralization Influenced by Continuous Application of Livestock Manure Composts

가축분퇴비가 연용된 밭 토양에서 잠재적 질소 무기화량 추정

  • Received : 2010.04.12
  • Accepted : 2010.05.22
  • Published : 2010.06.30

Abstract

The characteristics of nitrogen mineralization in upland soil was studied with 27-week incubation at $25^{\circ}C$. The used soils in this experiment were received six kinds of livestock manure compost each year for four years. Six different composts, which were chicken (CHM), pig (PIM), and cow (COM) manure composted without bulking agent, and chicken (CHMS), pig (PIMS), and cow (COMS) manure composted with sawdust as a bulking agent, were selected for this study. The first-order model was fit to the observed mineral nitrogen (N) vs incubation days using a non-linear regression procedure. The soil potential for N mineralization (No) of manure compost (CHM, PIM, and COM) treated soils were higher than those of the manure-sawdust compost (CHMS, PIMS, and COMS) treated soils. The No value of PIM applied soil was 15.0 mg 100 $g^{-1}$, which was the highest value among the treatments. The amount of N mineralized in compost applied soils ranged from 8.1% to 11.9% of the total N content in soils and increased with increasing total N content in soils. The organic matter content in compost applied soils were negatively correlated with No value (r = $-0.69^*$). Therefore, our result indicated that determination of N application rate in livestock manure compost applied soil should be based on total nitrogen content better than soil organic matter content.

가축분 퇴비 시용이 토양 중 질소 무기화 특성에 미치는 영향을 구명하기 위해 계분 (CHM), 돈분 (PIM), 우분 (COM), 계분톱밥 (CHMS), 돈분톱밥 (PIMS), 및 우분톱밥 (COMS) 퇴비를 4년간 연용한 밭 토양을 대상으로 27주간 항온시험을 실시하였다. 항온기간 동안 누적 질소 무기화량을 1차 반응 속도식 (first-order kinetics)에 적용하여 잠재적 질소무기화량 (No)을 평가한 결과, PIM 처리구에서 15.0 mg 100 $g^{-1}$으로 가장 높았으며, COMS 처리구에서 9.5 mg 100 $g^{-1}$로 가장 낮았다. 그리고 질소 무기화 속도상수, k는 CHM 0.017 > PIMS 0.016 ${\geq}$ CHMS 0.016 > PIM 0.014 > COM 0.012 ${\geq}$ COMS 0.012 순으로 나타났다. 특히, No 값은 토양 중 전질소 함량이 증가함에 따라 증가하는 경향을 보였고, 이는 토양 중 전질소 함량의 8.1-11.9% 이었다. 그리고 No 값은 토양 유기물 함량과는 음의 상관관계를 보였다. 따라서 톱밥이 혼용된 가축분 퇴비가 장기 연용된 토양에서 유기물 함량을 근거로 산출하는 현재의 질소 시비량 결정 방법은 개선이 필요하다고 판단된다.

Keywords

References

  1. Antonopoulos, V.Z. 1999. Comparison of different models to simulate sil temperature and moisture effects on nitrogen mineralization in the soil. J. Plant Nutr. Soil Sci. 162:667-675. https://doi.org/10.1002/(SICI)1522-2624(199912)162:6<667::AID-JPLN667>3.0.CO;2-D
  2. Barbarika, A., L.P. Sikola, and D. Colacicco. 1985. Factors affecting the mineralization or nitrogen in sewage sludge applied to soils. Soil Sci. Soc. Am. J. 64:184-189.
  3. Bernal, M.P. and H. Kirchmann. 1992. Carbon and nitrogen mineralization and ammonia volatilization rrom rresh, aerobically and anaerobically treated pig manure during incubation with soil. Biol. Fertil. Soils. 13:135-141.
  4. Campbell, C.A., Y.W. Jame, and G,E. Winkleman. 1984. Mineralization rate constnats and their use for estimating nitrogen mineralization in some Canadina prairie soils. Can. J. Soil Sci. 64:333-343. https://doi.org/10.4141/cjss84-035
  5. Chae, Y.M. and M.A. Tabatabai. 1986. Mineralization of nitrogen in soils amended with organic wastes. J. Environ. Qual. 15:193-198.
  6. Douglas. B.F. and F.R. Magdoff. 1991. An evaluation of nitrogen mineralization induce ror organic residues. J. Environ. Qual. 20:368-372.
  7. Eghball, B. 2000. Nitrogen mineralization from fieldapplied beer cattle feedlot manure or compost. Soil Sci. Soc. Am. J. 64:2024-2030 https://doi.org/10.2136/sssaj2000.6462024x
  8. Hernandez, T., R. Moral, A. Perez-Espinosa, J. MorenoCaselles, M.D. Perez-Murcia, and C. Garcia. 2002. Nitrogen mineralization potential in calcareous soils amended with sewage sludge. Bioresour. Technol. 83: 213-219 . https://doi.org/10.1016/S0960-8524(01)00224-3
  9. Honeycutt, C.W. 1999. Nitrogen mineralization rrom soil organic matter and crop residues : Field validation of laboratory predictions. Soil Sci. Soc. Am. J. 63:134-141. https://doi.org/10.2136/sssaj1999.03615995006300010020x
  10. Hscu, Z. Y. and C.C. Huang. 2005. Nitrogen mineralization potentials in three tropical soils treated with biosolids. Chemosphere. 59:447-454. https://doi.org/10.1016/j.chemosphere.2004.10.042
  11. Ireneo, J.M., W. Iwao, B.M. Grace, and G.T. Jasper. 1996. Nitrogen mineralization in tropical wetland rice soils. I. Relationship with temperature and soil properties. Soil Sci. Plant Nutr. 42:229-238.
  12. Janssen, B.H. 1996. Nitrogen mineralization in relation to C/N ratio and decomposability or organic matters. Plant Soil 181 :39-45. https://doi.org/10.1007/BF00011290
  13. Kafkafi, U., B. Baryoser, and H. Aviva. 1983. Fetilization decision model-a synthesis or soil and plant parameters in a computerized program. Soil Sci. 125:261 -268.
  14. Kazuyuki, I., W. Hidenori, and T. Yosuo. 1985. Easily decomposable organic mailer in paddy soil: VI. Kinetics or nitrogen mineralization in submerged soils. Soil Sci. Plant. Nutr. 31:563-572 https://doi.org/10.1080/00380768.1985.10557464
  15. Kim J.G., K.B. Lee, S.B. Lee, D.B. Lee, and S.J. Kim. 1999. The effect of long-term application of different organic material sources on chemical properties of upland soil. J. Kor. Soil Sci. Fert. 32:239-253.
  16. Kim, P.J., D.Y. Chung, K.W. Chang. and B.L. Lee. 1997. Mineralization of cattlc manure compost at various soil moisture content. Kor. J. Environ. Agri. 16:295-303.
  17. Koopman C. and W. Goldstein. 2001. Soil organic matter budgeting in sustainable farming with applicalions to southeastern Wisconsin and northem Illinois. Bulletin No. 7. Michael Fields Agricultural Institute. p. 39.
  18. Lindemann, W.C. and M. Caldenas. 1984. Nitrogen mineralization potential and nitrogen transformation of sludge-amended soil. Soil Sci. Soc. Am. J. 48: 1072- 1077. https://doi.org/10.2136/sssaj1984.03615995004800050024x
  19. Marion, G.M., J. Kummerow, and P.C. Miller. 1981. Predicting nitrogen mineralization in chaparral soils. Soil Sci. Soc. Am. J. 45:956-961. https://doi.org/10.2136/sssaj1981.03615995004500050028x
  20. Mengel, K. and E.A. Kirkby. 1987. Principles of plant nutrition. 4th edition. International potash institute. Bern. Switzerland. p. 347-446.
  21. Miller, R.W., R.L. Donahu, and J.U. Miller. 1990. Soils. An introduction to soils and plant growth. 6th edition. Prentice. Hall International. p. 192-278.
  22. Min, K.B. , H.S. Cho. J.I. Lee, and Y.K. Nam. 1995. Effects of fermented pig manure-sawdust compost of the yield and mineral nutrition of tomato in the plastic film house. J. Kor. Soil Sci. Fert. 28:88-94.
  23. Molina, J.A.E., C.E. Clapp, and W.E. Larson. 1980. Potentially mineralizable nitrogen in soil : The simple exponential model does not apply for the first 12weeks of incubation. Soil Sci. Soc. Am. J. 44:442-443.
  24. NIAST. 2000. Methods of Soil and Crop Plant Analysis. National Institute of Agricultural Science and Technology, RDA.
  25. Qian, P. and J.J. Schoennau. 1995. Assessing nitrogen mineralization from soil organic matter using anion exchange membranes. Fertil. Res. 40:143.148. https://doi.org/10.1007/BF00750099
  26. Smith, J.G., R.R. Schnabel, B.L. McNeal, and G.S. Campbell. 1980. Potential errors in the first-order model for estimating soil nitrogen mineralization potentials. Soil. Sci. Am, J. 44:996-1000. https://doi.org/10.2136/sssaj1980.03615995004400050025x
  27. Stanford, G. and S.J. Smith. 1972. Nitrogen mineralization potentials of soils. Soil. Sci. Amer. Proc. 36:465-472. https://doi.org/10.2136/sssaj1972.03615995003600030029x
  28. Talpaz, H., P. and B. Bar-Yosef. 1981. On the estimation of N-mineralization parameters rrom incubation experiments. Soil Sci. Am, J. 45:993.996. https://doi.org/10.2136/sssaj1981.03615995004500050036x
  29. Wang, W.J., C.J. Smith, and D. Chen. 2004. Prediction soil nitrogen mineralization dynamics with a modified double exponential model. Soil Sci. Soc. Am. J. 68:1256.1265. https://doi.org/10.2136/sssaj2004.1256
  30. Yun, H.B., Y. Lee, C.H. Yu, S.M. Lee, B.K. Hyun, and Y.B. Lee. 2007. Effects of crude carbohydrate content in livestock manure compost on organic matter decomposition rate in upland soil. J. Kor. Soil Sci. Fert. 40:364.368.