• 제목/요약/키워드: Organic Light-Emitting Device

검색결과 598건 처리시간 0.027초

Self-Alignment Ink-Jet Printed Light Emitting Devices and Light Emitting Seals

  • Okada, Hiroyuki;Matsui, Kenta;Naka, Shigeki;Shibata, Miki;Ohmori, Masahiko;Kurachi, Naomi;Sawamura, Momoe;Suzuki, Shin-Ichi;Inoue, Toyokazu;Miyabayashi, Takeshi;Murase, Makoto;Takao, Yuuzou;Hibino, Shingo;Bessho, Hisami
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.449-452
    • /
    • 2009
  • Ink-jet printed (IJP) self-aligned (SA) organic light emitting diodes (OLEDs) and its application to light emitting seal have investigated. Ink-jet printing of light emitting material is carried out onto transparent anode covered with insulating material. Laminated light emitting seal with SA IJP OLED without photo - lithographic process and any vacuum process, noncontact type electromagnetic power supply without electric power supply line, and light emitting tag with network type RF communication terminal by controlling display information were demonstrated.

  • PDF

부분 도핑을 이용한 단순구조 청색인광 OLED 특성 (Characteristics of blue phosphorescent OLED with partially doped simple structure)

  • 김태용;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.156-156
    • /
    • 2010
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (OLED) with simplified architectures using blue phosphorescent material. The basis device structure of the blue PHOLED was anode / emitting layer (EML) / electron transport layer (ETL) / cathode. The dopant was partially doped into the host layer for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs.

  • PDF

TCNQ 분자를 이용한 유기 발광 소자의 전기적 특성 (Electrical Properties of Organic Light-emitting Diodes Using TCNQ Molecules)

  • 나수환;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.896-900
    • /
    • 2010
  • Electrical properties of organic light-emitting diodes were studied in a device with 7,7,8,8-tetracyano-quinodimethane (TCNQ) to see how the TCNQ affects on the device performance. Since the TCNQ has a high electron affinity, it is used for a charge-transport and injection layer. We have made a reference device in a structure of ITO(170 nm)/TPD(40 nm)/$Alq_3$(60 nm)/LiF(0.5 nm)/Al(100 nm). And two types of devices were manufactured. One type of device is the one made by doping 5 and 10 vol% of TCNQ to N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) layer. And the other type is the one made with TCNQ layer inserted in between the ITO anode and TPD organic layer. Organic layers were formed by thermal evaporation at a pressure of $10^{-6}$ torr. It was found that for the TCNQ doped devices, turn-on voltage of the device was reduced by about 20 % and the current efficiency was improved by about three times near 6 V. And for devices with TCNQ layer inserted in between the ITO anode and TPD layer, it was found that the current efficiency was improved by more than three times even though there was not much change in turn-on voltage.

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

유기 발광 소자의 광추출 효율 향상을 위한 마이크로 렌즈 어레이의 시뮬레이션 (Simulation of Microlens Array for the Improvement of Outcoupled Efficiency of Organic Light-emitting Diodes)

  • 황덕현;김혜숙;이원재;이승훈;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.745-753
    • /
    • 2013
  • Performance of organic light-emitting diodes incorporating microlens array was simulated using a Light Tools software. Use of microlens array can help the light to escape out of the device. We simulated a reference device that is consisted of reflection layer, emissive layer, and flat transparent substrate. And in this reference device, outcoupled efficiency of 22% was obtained. Several shapes of microlens were applied such as hemisphere, trapezoid, cone, and rectangular parallelepiped. The results showed the improvement of outcoupled efficiency of the device with microlens compared to that of the reference one. And from the analyses of the simulated data, the obtained appropriate shape of microlens is hemisphere, and the improvement of the device with hemispherical lens is 57% higher than that of the reference one.

Two-Wavelength에 의한 백색 유기 발광 소자 제작 (The fabrication of White Organic Light-Emitting Diodes using Two-Wavelength)

  • 김중연;최성진;조재영;강명구;신선호;주성후;오환술
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(2)
    • /
    • pp.25-28
    • /
    • 2002
  • We have been fabricated white organic light emitting diode with two-wavelength ard mixing blue emit in DPVBi (4, 4-bis(2, 2-diphenylvinyl)-1, 1 -biphenyl)layer and yellow emit in rubrene (5, 6, 11, 12-tetraphenylnaphthacene)as emitting layer which are controlled with thickness. This device emits white light emitting in CIE (0.29, 0.33), 1000cd/$m^2$ at DC 18V.

  • PDF

Improved Performance of White Phosphorescent Organic Light-Emitting Diodes through a Mixed-Host Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Chu, Hye-Yong
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.642-646
    • /
    • 2009
  • Highly efficient white phosphorescent organic light-emitting diodes with a mixed-host structure are developed and the device characteristics are studied. The introduction of a hole-transport-type host (N, N'-dicarbazolyl-3-3-benzen (mCP)) into an electron-transport-type host (m-bis-(triphenylsilyl)benzene (UGH3)) as a mixed-host emissive layer effectively achieves higher current density and lower driving voltage. The peak external quantum and power efficiency with the mixed-host structure improve up to 18.9% and 40.9 lm/W, respectively. Moreover, this mixed-host structure device shows over 30% enhanced performance compared with a single-host structure device at a luminance of 10,000 $cd/m^2$ without any change in the electroluminescence spectra.

고효율의 용액공정용 유기 발광 다이오드 제작을 위한 ITO 전처리 연구 (Study on the ITO Pre-treatment for the Highly Efficient Solution Processed Organic Light-emitting Diodes)

  • 최은영;서지현;최학범;제종태;김영관
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.18-23
    • /
    • 2010
  • We demonstrated that the solution processed organic light-emitting diodes (OLEDs) have the high efficiency with pre-treated indium-tin-oxide (ITO). ITO surface was pre-treated with four methods and compared each other. The pre-treatment of ITO surface improves the chemical and physical characteristics of ITO such as the surface roughness, adhesion property, and the hole injection ability. These properties were analyzed by the contact angle, atomic force microscope (AFM) image, and the current flow character in device. As a results, the device with ITO pre-treated by $O_2$ plasma shows the current efficiency of 5.93 cd/A, which is 1.5 times the device without pre-treatment.

유기전기발광소자에 사용될 수 있는 백금 착물에 대해 보조리간드 phenyl 기가 발광스펙트럼에 미치는 영향 (Effect of Ancillary Ligand, Phenyl group, on the Emission Spectrum of Pt(II) Complex Useful for Organic Light-Emitting Device)

  • 이승희;이호준
    • 한국응용과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.265-268
    • /
    • 2008
  • Among the efforts to increase the efficiency of organic light-emitting device (OLED), there is a way: doping phosphorescent materials. As a phosphorescent material, complexes of heavy transition metal, platinum, were synthesized. $Cl^-$ ion and phenyl group were used as ancillary ligands with 2-(2-pyridyl)benzimidazole (pbi) as a chromophore. The complexes were analysed by FAB-mass spectrometer and absorption and emission spectra were obtained. A phenyl group was able to shift the emission band of the complex even if it's not a chromorphore.

Recent Progress in the Development of Small Organic Molecules for White Organic Light Emitting Devices

  • Raja, Inam ul Haq;Jung, Se-Jin;Lee, So-Ha
    • 한국응용과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.91-106
    • /
    • 2008
  • Development of white light emitting materials has been an interesting area for scientists and scientists have developed many organic, polymer and inorganic materials for white electroluminescent devices. Among them, single component small molecules gave best results in terms of efficiency, simplicity of device fabrication, and CIE values. Therefore, this review covers detailed discussion about syntheses of small compounds used in white organic light emitting devices until 2007.