DOI QR코드

DOI QR Code

Simulation of Microlens Array for the Improvement of Outcoupled Efficiency of Organic Light-emitting Diodes

유기 발광 소자의 광추출 효율 향상을 위한 마이크로 렌즈 어레이의 시뮬레이션

  • Hwang, Deok Hyeon (Department of Information Display Engineering, Hongik University) ;
  • Kim, Hye Sook (Department of Information Display Engineering, Hongik University) ;
  • Lee, Won Jae (Department of Electronic Engineering, Gachon University) ;
  • Lee, Seunghun (Kwangwoon Electronics Technical High School) ;
  • Kim, Tae Wan (Department of Information Display Engineering, Hongik University)
  • 황덕현 (홍익대학교 정보디스플레이공학과) ;
  • 김혜숙 (홍익대학교 정보디스플레이공학과) ;
  • 이원재 (가천대학교 전자공학과) ;
  • 이승훈 (광운전자공업고등학교) ;
  • 김태완 (홍익대학교 정보디스플레이공학과)
  • Received : 2013.09.21
  • Accepted : 2013.09.24
  • Published : 2013.10.01

Abstract

Performance of organic light-emitting diodes incorporating microlens array was simulated using a Light Tools software. Use of microlens array can help the light to escape out of the device. We simulated a reference device that is consisted of reflection layer, emissive layer, and flat transparent substrate. And in this reference device, outcoupled efficiency of 22% was obtained. Several shapes of microlens were applied such as hemisphere, trapezoid, cone, and rectangular parallelepiped. The results showed the improvement of outcoupled efficiency of the device with microlens compared to that of the reference one. And from the analyses of the simulated data, the obtained appropriate shape of microlens is hemisphere, and the improvement of the device with hemispherical lens is 57% higher than that of the reference one.

Keywords

References

  1. M. H. Andreasson, J. Martensson, and T. G. Andersson, Curr. Appl. Phys., 8, 163 (2008). https://doi.org/10.1016/j.cap.2007.07.003
  2. C. C. Yap, M. Yahaya, and M. M. Salleh, Curr. Appl. Phys., 8, 637 (2008). https://doi.org/10.1016/j.cap.2007.11.006
  3. Z. Jun, H. Guo, and J. Wang, Curr. Appl. Phys., 11, 162 (2011). https://doi.org/10.1016/j.cap.2010.06.029
  4. M. H. Wu, K. E. Paul, and G. M. Whitesides, Appl. Opt., 41, 2575 (2002). https://doi.org/10.1364/AO.41.002575
  5. S. Moller and S. R. Forrest, J . Appl. Phys., 91, 3324 (2001).
  6. M. K. Wei and I. L. Su, Opt. Express, 12, 5777 (2004). https://doi.org/10.1364/OPEX.12.005777
  7. M. K. Wei, I. L. Su, Y. J. Chen, M. Chang, H. Y. Lin, and T. C. Wu, J . Micromech. Microeng., 16, 368 (2006). https://doi.org/10.1088/0960-1317/16/2/022
  8. M. K. Wei, J. H. Lee, H. Y. Lin, Y. H. Ho, K. Y. Chen, C. C. Lin, C. F. Wu, H. Y. Lin, J. H. Tsai, and T. C. Wu, Pure Appl. Opt., 10, 1 (2008).
  9. J. Y. Kim and K. C. Choi, J . Disp. Tech., 7, 377 (2011). https://doi.org/10.1109/JDT.2011.2121053
  10. H. C. Ki, D. K. Kim, S. H. Kim, S. K. Kim, A. R. Park, and H. B. Gu, J . KIEEME, 24, 817 (2011).
  11. H. Greiner, Jpn. J . Appl. Phys., 46, 4125 (2007). https://doi.org/10.1143/JJAP.46.4125