• Title/Summary/Keyword: Ore minerals

Search Result 354, Processing Time 0.026 seconds

Copper Mineralization in the Haman-Gunbuk Area, Gyeongsangnamdo-Province: Fluid Inclusion and Stable Isotope Study (경상남도 함안-군북지역의 동광화작용: 유체포유물 및 안정동위원소 연구)

  • 허철호;윤성택;최상훈;최선규;소칠섭
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.75-87
    • /
    • 2003
  • The Haman-Gunbuk mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Major ore minerals, magnetite, scheelite, molybdenite and chalcopyrite, together with base-metal sulfides and minor sulfosalts, occur in fissure-filling tourmaline, quartz and carbonates veins contained within Cretaceous sedimentary and volcanic rocks anu/or granodiorite (118{\pm}$3.0 Ma). The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage 1, tourmaline+quartz+Fe-Cu ore mineralization; Stage II, quartz+sulfides+sulfosalts+carbonates; Stage 111, barren calcite. Earliest fluids are recorded in stage I and early por-tions of stage II veins as hypersaline (35~70 equiv. wt.% NaCl+KCl) and vapor-rich inclusions which homogenize from ~30$0^{\circ}C$ to $\geq$50$0^{\circ}C$. The high-salinity fluids are complex chloride brines with significant concentrations of sodium, potassium, iron, copper, and sulfur, though sulfide minerals are not associated with the early mineral assemblage produced by this fluid. Later solutions circulated through newly formed fractures and reopened veins, and are recorded as lower-salinity(less than ~20 equiv. wt.% NaCl) fluid inclusions which homogenize primarily from ~200 to 40$0^{\circ}C$. The oxygen and hydrogen isotopic compositions of fluid in the Haman-Gunbuk hydrothermal system represents a progressive shift from magmatic-hydrothermal dominance during early mineralization stage toward meteoric-hydrothermal dominance during late mineralization stage. The earliest hydrothermal fiuids to circu-late within the granodiorite stock localiring the ore body at Haman-Gunbuk could have exsolved from the crystal-lizing magma and unmixed into hypersaline liquid and $H_2O$-NaCl vapor. As these magmatic fluids moved throughfractures, tourmaline and early Fe, W, Mo, Cu ore mineralization occurred without concomitant deposition of othersulfides and sulfosalts. Later solutions of dominantly meteoric origin progressively formed hypogene copper and base-metal sulfides, and sulfosalt mineralization.

Temporal Variations of Ore Mineralogy and Sulfur Isotope Data from the Boguk Cobalt Mine, Korea: Implication for Genesis and Geochemistry of Co-bearing Hydrothermal System (보국 코발트 광상의 산출 광물종 및 황동위원소 조성의 시간적 변화: 함코발트 열수계의 성인과 지화학적 특성 고찰)

  • Yun, Seong-Taek;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.289-301
    • /
    • 1997
  • The Boguk cobalt mine is located within the Cretaceous Gyeongsang Sedimentary Basin. Major ore minerals including cobalt-bearing minerals (loellingite, cobaltite, and glaucodot) and Co-bearing arsenopyrite occur together with base-metal sulfides (pyrrhotite, chalcopyrite, pyrite, sphalerite, etc.) and minor amounts of oxides (magnetite and hematite) within fracture-filling $quartz{\pm}actinolite{\pm}carbonate$ veins. These veins are developed within an epicrustal micrographic granite stock which intrudes the Konchonri Formation (mainly of shale). Radiometric date of the granite (85.98 Ma) indicates a Late Cretaceous age for granite emplacement and associated cobalt mineralization. The vein mineralogy is relatively complex and changes with time: cobalt-bearing minerals with actinolite, carbonates, and quartz gangues (stages I and II) ${\rightarrow}$ base-metal sulfides, gold, and Fe oxides with quartz gangues (stage III) ${\rightarrow}$ barren carbonates (stages IV and V). The common occurrence of high-temperature minerals (cobalt-bearing minerals, molybdenite and actinolite) with low-temperature minerals (base-metal sulfides, gold and carbonates) in veins indicates a xenothermal condition of the hydrothermal mineralization. High enrichment of Co in the granite (avg. 50.90 ppm) indicates the magmatic hydrothermal derivation of cobalt from this cooling granite stock, whereas higher amounts of Cu and Zn in the Konchonri Formation shale suggest their derivations largely from shale. The decrease in temperature of hydrothermal fluids with a concomitant increase in fugacity of oxygen with time (for cobalt deposition in stages I and II, $T=560^{\circ}C-390^{\circ}C$ and log $fO_2=$ >-32.7 to -30.7 atm at $350^{\circ}C$; for base-metal sulfide deposition in stage III, $T=380^{\circ}-345^{\circ}C$ and log $fO_2={\geq}-30.7$ atm at $350^{\circ}C$) indicates a transition of the hydrothermal system from a magmatic-water domination toward a less-evolved meteoric-water domination. Sulfur isotope data of stage II sulfide minerals evidence that early, Co-bearing hydrothermal fluids derived originally from an igneous source with a ${\delta}^{34}S_{{\Sigma}S}$ value near 3 to 5‰. The remarkable increase in ${\delta}^{34}S_{H2S}$ values of hydrothermal fluids with time from cobalt deposition in stage II (3-5‰) to base-metal sulfide deposition in stage III (up to about 20‰) also indicates the change of the hydrothermal system toward the meteoric water domination, which resulted in the leaching-out and concentration of isotopically heavier sulfur (sedimentary sulfates), base metals (Cu, Zn, etc.) and gold from surrounding sedimentary rocks during the huge, meteoric water circulation. We suggest that without the formation of the later, meteoric water circulation extensively through surrounding sedimentary rocks the Boguk cobalt deposits would be simple veins only with actinolite + quartz + cobalt-bearing minerals. Furthermore, the formation of the meteoric water circulation after the culmination of a magmatic hydrothermal system resulted in the common occurrence of high-temperature minerals with later, lower-temperature minerals, resulting in a xenothermal feature of the mineralization.

  • PDF

A Study on the Genesis of Fluorite Deposits of South Korea (남한(南韓)의 형석광상(螢石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.25-56
    • /
    • 1975
  • Most fluorite deposits of South Korea are distributed in three metallogenic zones namly as: Hwacheon, Hwangangni and Geumsan metallogenic zones. Fluorite deposits of each zone show The characteristic features owing to the geological setting, the structural patterns and their forming processes. deposits of the Hwacheon metallogenic zone are wholly fissure filling hydrothermal veins emThe bedded in shear fractures of the granite gneiss or schists of Precambrian age or in the cooling fractures of the granite and acidic hypabyssal rocks which are assumed to be a differentiated sister rock of the granite. Localization of most fluorite veins of the region is structurally controlled by NW and EW fracture systems and genetically related to the granite intrusion which ascertained as motivating rock of the fluorite mineralization. Fluorites are in most cases accompanied by quartz, chalcedony mainly and rarely agate, calcite, barite and sulphide base metals in some localities. The deposits of the Hwangangni metallogenic zone were formed at the last stage of hydrothermal polymineralization of W, Mo, Cu, Pb, Zn. The majority of the fluorite ore bodies were originated from replacement in limestone beds of Great Limestone Series or in calcareous interbeds of metasediments, whereas some cavity-filling ore bodies were embedded in phyllites and schists of the Ockcheon system and along the fissures in the replaced beds which were originated by volume decrease. The localization of fluorite deposits in this region is genetically related to the Moongyong granite which has been dated as middle Cretaceous, and controlled structurally by the $N20^{\circ}{\sim}50^{\circ}W$ extension fracture system or axial planes of folds, and by faults of NE direction that acted as paths of ore solution. The deposits of the Geumsan metallogenic zone are seemed to be formed through the similar process as that of Hwangangni metallogenic zone, but characteristic distinctions are in that they are more prevailing fracture filling veins and large number of the deposits are localized in roof-pendants or xenolithes of limestone in granites and porphyries. Igneous rocks that presumably motivated the mineraltzation are middle Cretaceous Geumsan granite and porphyries. Metallogenic epoch of the fluorite mineralization of South Korea are puesumably limited in early-middle Cretaceous. Studies of the fluid inclusions in fluorites of the region reveal that the homogenization temperature of the fluorite deposits are as follows: Hwacheon metallogenic zone : $95^{\circ}C{\sim}165^{\circ}C$; Hwangangni metallogenic zone : $97^{\circ}C{\sim}235^{\circ}C$; Geumsan metallogenic zone : $93^{\circ}C{\sim}236^{\circ}C$. Judging from the above results, the deposits of the Hwancheon region were formed at the epithermal stage, and those in the Hwangangni and Geumsan regions, were deposited at epithermal stage preceded by mesothermal mineralization of small scale in which some sulphide minerals were deposited. The analytical data of minor elements in the fluorites reveal that ore solutions of Hwangangni metallogenic zone seemed to be emanated in more acidic stage of magma differentiation than Hwacheon metallogenic zone did.

  • PDF

Hydrothermal Alteration of Miryang Pyrophyllite Deposit (밀양납석광상의 열수변질 특징)

  • Moon, Dong Hyeok;Kwak, Kyeong Yoon;Lee, Bu Yeong;Koo, Hyo Jin;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.265-277
    • /
    • 2015
  • Hydrothermal alteration patterns and environment are studied by mineral assemblages and chemical analyses of surface and core samples from Miryang pyrophyllite deposit. The alteration zones of this deposit can be divided into three zones on the basis of mineral assemblage; advanced argillic, phyllic, and propylitic zone. Advanced argillic zone mainly consists of pyrophyllite-dickite (-quartz) and corresponds to principal mining ore. The common mineral assemblage of phyllic zone and propylitic zone are sericite-quartz-dickite and chlorite-quartz, respectively. Horizontal and vertical alteration patterns and major element geochemistry indicate that pyrophyllite ores have been formed several times by hydrothermal alteration. And it also suggests that the huge ore bodies may be extended from the deeper part of recent quarries to the south-southeastern direction. The paragenesis of ore minerals and polytype (2M) suggest that ore deposit was formed at about $300-350^{\circ}C$.

Hydrothermal Cold-silver Mineralization of the Gajok Deposit in the Hongcheon Mining District, Korea (홍천 광화대, 가족 광상의 금.은 광화작용)

  • Pak, Sang-Joon;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • The Cretaceous Gajok gold-silver deposit within porphyry granite is located nearby the Cretaceous Pungam basin at the northeastern area in Republic of Korea. The Gajok gold-silver deposit is distinctively composed of a multiple-complex hydrothermal veins with comb, crustiform chalcedony quartz and vug textures, implying it was formed relatively shallower depth. The hypogene open-space filling veins could be divided into 5 paragenetic sequences, increasing tendency of Ag-rich electrum and Ag-phases with increasing paragenetic time. Electrum with high gold contents (${\sim}50$ atomic % Au) as well as sphalerite with high FeS contents (${\sim}6$ mole % FeS) are representative ore minerals in the middle stage. The late stage is characterized by silver-phase such like native silver and/or argentite, coexisting with Ag-rich electrum ($10{\sim}30$ atomic % Au) and Fe-poor sphalerite (< 1 mole % FeS). The ore-forming fluids evolution started at relatively high temperature and salinity (${\sim}360^{\circ}C$, ${\sim}7\;wt.%$ eq. NaCl) and were evolved by dilution and mixing mechanisms on the basis of fluid inclusion study. The gold-silver mineralization proceeded from ore-forming fluids containing greater amounts of less-evolved meteoric waters(${\delta}^{18}O$; $-0.6{\sim}-6.7\;%o$). These results imply that gold-silver mineralization of the Cretaceous Gaiok deposit formed at shallow-crustal level and could be categorized into low-sulfidation epithermal type, related to Cretaceous igneous activity.

Geochemistry of Stable Isotope and Mineralization Age of Magnetite Deposits from the Janggun Mine, Korea (장군광산(將軍鑛山) 자철광상(磁鐵鑛床)의 광화시기(鑛化時期) 및 안정동위원소(安定同位元素) 지화학(地化學))

  • Lee, Hyun Koo;Lee, Chan Hee;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • The Janggun magnetite deposits occur as the lens-shaped magnesian skarn, magnetite and base-metal sulfide orebodies developed in the Cambrian Janggun Limestone Formation. The K-Ar age of alteration sericite indicates that the mineralization took place during late Cretaceous age (107 to 70 Ma). The ore deposition is divided into two stages as a early skarn and late hydrothermal stage. Mineralogy of skara stage (107 Ma) consists of iron oxide, base-metal sulfides, Mg-Fe carbonates and some Mg- and Ca-skarn minerals, and those of the hydrothermal stage (70 Ma) is deposited base-metal sulfides, some Sb- and Sn-sulfosalts, and native bismuth. Based on mineral assemblages, chemical compositions and thermodynamic considerations, the formation temperature, $-logfs_2$, $-logfo_2$ and pH of ore fluids progressively decreased and/or increased with time from skarn stage (433 to $345^{\circ}C$, 8.8 to 9.9 atm, 29.4 to 31.6 atm, and 6.1 to 7.2) to hydrothermal stage (245 to $315^{\circ}C$, 11.2 to 12.3 atm, 33.6 to 35.4 atm, and 7.3 to 7.8). The ${\delta}^{34}S$ values of sulfides have a wide range between 3.2 to 11.6‰. The calculated ${\delta}^{34}S_{H_2S}$ values of ore fluids are relatively homo-geneous as 2.9 to 5.4‰ (skam stage) and 8.7 to 13.5‰ (hydrothermal stage), which are a deep-seated igneous source of sulfur indicates progressive increasing due to the mixing of oxidized sedimentary sulfur with increasing paragenetic time. The ${\delta}^{13}C$ values of carbonates in ores range from -4.6 to -2.5‰. Oxygen and hydrogen isotope data revealed that the ${\delta}^{38}O_{H_2O}$ and ${\delta}D$ values of ore fluids decreased gradually with time from 14.7 to 1.8‰ and -85 to -73‰ (skarn stage), and from 11.1 to -0.2‰ and -87 to -80‰ (hydrothermal stage), respectively. This indicates that magmatic water was dominant during the early skarn mineralization but was progressively replaced by meteoric water during the later hydrothermal replacement.

  • PDF

Element Dispersion by the Wallrock Alteration of Daehyun Gold-silver Deposit (대현 금-은광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.199-206
    • /
    • 2013
  • The Daehyun gold-silver deposit consists of two hydrothermal quartz veins that fill NE-trending fractures in the Cambro-Ordovician calcitic marble. I have sampled wallrock, hydrothermaly-altered rock and gold-silver ore vein to study the element dispersion and element gain/loss during wallrock alteration. The hydrothermal alteration doesn't remarkably recognized at this deposit and consists of mainly calcite, dolomite, quartz and minor epidote. The ore minerals composed of arsenopyrite, pyrrhotite, pyrite, sphalerite, stannite, chalcopyrite, galena, electrum, native bismuth and silver-bearing mineral. Based on analyzed data, the chemical composition of wallrock consists of mainly $SiO_2$, CaO, $CO_2$ with amounts of $Al_2O_3$, $Fe_2O_3(T)$ and MgO. The contents of $SiO_2$, $Fe_2O_3(T)$, MgO, CaO and $CO_2$ vary significantly with distance from ore vein. The element dispersion doesn't remarkably recognized during wallrock alteration and only occurs near the ore vein margin because of physical and chemical properties of wallrock. Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, total S, Ag, As, Bi, Cd, Cu, Ni, Pb, Sb, Sn, W and Zn. Remarkable loss elements are $SiO_2$, MnO, MgO, CaO. $CO_2$ and Sr. Therefore, Our result may be used when geochemical exploration carry out at deposits hosted calcitic marble in the Hwanggangri metallogenic district.

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit (거창 열수 맥상광상의 함 금-은 광화작용)

  • Hong, Seok Jin;Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

Genetic Environments of Dongwon Au-Ag-bearing Hydrothermal Vein Deposit (동원 함 금-은 열수 맥상광상의 생성환경)

  • Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.753-765
    • /
    • 2021
  • The Dongwon Au-Ag deposit is located within the Paleozoic Taebaeksan province, Okcheon belt. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages(early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor magnetite, pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by argentite, Cu-As (and/or Sb) and Ag-Sb sulfosalts with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥430℃) and later lower temperatures (≤230℃) from fluids with salinities between 6.0 to 0.4 wt. percent equiv. NaCl. The relationship of salinity and homogenization temperature suggest that ore mineralization at Dongwon was deposited mainly due to fluid boiling, cooling and dilution via influx of cooler, more dilute meteoric waters. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Dongwon hydrothermal system with increasing paragenetic time. The Dongwon deposit may represents a Korean-type and/or Au-Ag type mesothermal/epithermal gold-silver deposit.

Determination of Alpha Defect Center in the Nature Using EPR Spectroscopy

  • Cho, Young-Hwan;Hyun, Sung-Pil;Pilsoo Hahn
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • Natural alpha radiation produced a stable defect center to certain minerals. Electron Paramagnetic Resonance(EPR) spectroscopy is a powerful tool f3r quantifying this defect center. EPR method has been applied to trace alpha-radiation effect around the uranium ore deposit. The results show that EPR technique can be used to measure rapidly and nondestructively the defect center produced by natural alpha radiation. In general, a good correlation was achieved between defect center concentration and actinide elements(U, Th). These results imply that the concentration of defect center is dependent on the alpha radiation dose over long time scale.

  • PDF