DOI QR코드

DOI QR Code

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit

거창 열수 맥상광상의 함 금-은 광화작용

  • Hong, Seok Jin (Intellegio) ;
  • Lee, Sunjin (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • Received : 2022.04.20
  • Accepted : 2022.04.26
  • Published : 2022.04.28

Abstract

The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

거창광상은 영남육괴 화강암질 편마암 또는 편마암질 화강암 내에 발달한 열극을 충전하여 생성된 함 금-은 열수 맥상광상으로, 괴상 및 호상 조직과 함께 부분적인 각력상 조직 및 정동의 발달 등 복합적인 조직적 특성을 보여준다. 거창광상의 맥상 광화작용은 구조운동(tectonic break)에 의하여 광화 1시기와 광화 2시기로 구분된다. 광화 1시기는 석영맥의 생성과 함께 주된 함 금·은 광물인 에렉트럼과 함께 황화광물 및 산화광물 등이 미량의 황염광물을 수반 산출한 시기로서, 공생관계와 광물조합 특성 등에 의하여 세 단계의 광화시기(초기, 중기, 후기)로 구분된다. 광화 1시기의 초기에는 주로 황철석, 자류철석, 유비철석 등이 산출되었다. 중기에는 주된 금-은 광화작용이 진행되어 에렉트럼과 함께 황동석, 섬아연석 등의 황화광물과 미량의 함 은 황염광물 등이 산출되었다. 후기에는 황철석, 섬아연석, 방연석 등과 함께 적철석 등이 산출되었다. 광화 2시기는 주 광화작용 이후의 금속 광화작용이 이루어지지 않은 방해석맥의 생성 시기이다. 거창광상의 주된 광화작용은 고온(≥380℃)의 H2O-CO2-NaCl계 열수유체 유입으로 시작되어 초기의 냉각과 비등작용, 중기의 불혼화용융 및 후기의 상대적으로 천부를 순환한 열수유체 또는 천수의 혼입 등에 의하여 ≥380℃~≤210℃의 온도조건에서 7.0 to 0.7 wt. percent NaCl 상당 염농도를 갖는 유체에서 진행되었다. 거창광상의 광물 공생관계 변화는 이러한 열수계의 진화에 의한 온도와 황 분압 조건의 감소 등의 환경변화가 반영된 결과이다. 거창광상은 중열수형 금·은 광상에 대비된다.

Keywords

Acknowledgement

본 연구는 한국광물자원공사의 2018년 정밀조사 학술연구용역의 지원을 받아 수행되었다. 현장 광상 조사 시에 함께하여 도움을 주신 한국광물자원공사 탐사팀 팀원들에게 감사의 마음을 전합니다. 본 논문을 세심하게 검토하여 고견을 주신 익명의 심사자들께 진심으로 감사드립니다.

References

  1. Barton, P.B.Jr. and Toulmin, P.III. (1964) The electrum-tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems. Geochim. Cosmochim. Acta, v.28, p.619-640. https://doi.org/10.1016/0016-7037(64)90082-1
  2. Bozzo, A.T., Chen, J.R. and Barduhn, A.J. (1975) The properties of the hydrates of chlorine and carbon dioxide. Desalination, v.16, p.303-320. https://doi.org/10.1016/S0011-9164(00)88004-2
  3. Burruss, R.C. (1981) Analusis of phase equilibria in C-O-H-S fluid inclusions. In : Hollister, L.S. & Crawford, M.L. (eds.) : Fluid Inclusions: Application to Petrolgy. Miner. Assoc. Can. Short Course Handbook, v.6, p.39-74.
  4. Chang, B.D. and Kim, N.W. (1991) Survey report of the Geochang mine. Korea Mining Promotion Corporation, 7p.
  5. Cheong, D.H., Cheong, B.J., Park, G.J. and Song, J.Y. (2018) The Detailed Survey report of the An-Eui quadrangle (Gold-Silver). KORES, 198p.
  6. Cho, D.L. and Kwon S.T. (1994) Hornblende geobarometry of the Mesozoic granitoids in south Korea and the evolution of crustal thickness. J. Geol. Soc. Korea, v.30, p.41-61.
  7. Choi, S.G., Chi, S.J. and Park, S.W. (1988a) Gold-Silver Mineralization of the Au-Ag Deposits at Yeongdong District, Chung-cheongbuk-Do. Econ. Environ. Geol., v.21, p.367-380.
  8. Choi, S.G., Pak, S.J., Choi, S.H. and Shin, H.J. (2001) Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea. Econ. Environ. Geol., v.34, p.25-38.
  9. Choi, S.G., Pak, S.J., Kim, S.W., Kim, C,S. and Oh, C.W. (2006) Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting. Econ. Environ. Geol., v.39, p.567-581.
  10. Choi, S.G., Park, N.Y. and Hong, S.S. (1988b) Mineralogy of goldsilver deposits in Chungcheong Province. Econ. Environ. Geol., v.21, p.223-234.
  11. Choi, S.H. (1999) A modelling of gold-silver deposits in Korea. Korea Mining Promotion Corporation, 1999-2, 92p.
  12. Craig, J.R. and Barton, P.B.Jr (1973) Thermochemical approximations for sulfosalts. Econ. Geol., v.68, p.498-506.
  13. Haynes, F.M. (1985) Determination of fluid inclusion compositions by sequential freezing. Econ. Geol., v.80, p.1436-1439. https://doi.org/10.2113/gsecongeo.80.5.1436
  14. Kretschmar, U. and Scott, S.D. (1976) Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Min., v.14, p.364-386.
  15. Lee, H.S., Song, Y.S., Park, K.H. and Cheong, C.S. (2007) U-Pb zircon age from Late Permian to Early Triassic (240-250 Ma) granite gneiss in central Yeongnam massif. Proceedings of Petrological Soc. of Korea, p.51-54.
  16. Potter, R.W.III., Clunne, M.A. and Brown, D.L. (1978) Freezing point depression aqueous sodium sodium chloride solutions. Econ. Geol., v.73, p.284-285. https://doi.org/10.2113/gsecongeo.73.2.284
  17. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  18. Seo, J.H., Song, Y.S. and Park, K.H. (2016) SHRIMP U-Pb Age of the Early Jurassic Deformed Granites in the Aneui Quadrangle, SW Yeongnam Massif. Econ. Environ. Geol., v.49, p.147-153. https://doi.org/10.9719/EEG.2016.49.2.147
  19. Shelton, K.L., So, C.S. and Chang, J.S. (1988) Gold-rich mesothermal vein deposits of the republic of Korea: Geochemical studies of the Jungwon gold area. Econ. Geol., v.83, p.1221-1237. https://doi.org/10.2113/gsecongeo.83.6.1221
  20. Song, Y.S. (1989) Geochemistry of the Precambrian metamorphic rocks from the central Sobaegsan Massif, Korea. Econ. Environ. Geol., v.22, p.293-300.
  21. Tsusue, A., Mizuta, T., Watanabe, M. and Min, K.G. (1981) Jurassic and Cretaceous granitic tocks in South Korea. Mining Geol., v.31, p.260-280.
  22. Turek, A. and Kim, C.B. (1996) U-Pb zircon ages for Precambrian rocks in southwestern Ryeongnam and southwestern Gyeonggi massifs, Korea. Geochemical Jour., v.30, p.231-249. https://doi.org/10.2343/geochemj.30.231