DOI QR코드

DOI QR Code

Structural Controls on Crustal Fluid Redistribution and Hydrothermal Gold Deposits: A Review on the Suction Pump and Fault Valve Models

지각 내 열수 재분배와 금광상 형성의 구조적 제어: 석션 펌프 및 단층 밸브 모델에 대한 리뷰

  • Kwak, Yujung (Department of Geology, Kyungpook National University) ;
  • Park, Seung-Ik (Department of Geology, Kyungpook National University) ;
  • Park, Changyun (Department of Geology, Kyungpook National University)
  • Received : 2022.04.21
  • Accepted : 2022.04.27
  • Published : 2022.04.28

Abstract

Hydrothermal gold deposits are evidence of intensive fluid flow through fault zones, and the resultant vein structures and textures reflect the fluid redistribution mechanism. This review introduces the suction pump and fault valve models as fluid circulation mechanisms causing hydrothermal gold deposits in the frameworks of the concepts of fault mechanics. The suction pump and fault valve models describe faulting-driven heterogeneous fluid flow and related vein formation mechanisms, accompanied by the cycles of (1) stress accumulation and fluid pressure build-up and (2) seismic rupture and stress/fluid pressure release. The models are available under different geological environments (stress conditions), and the vein structures and textures representing the mechanisms have similarities and differences. The suction pump and fault valve models must help better to interpret the origins of hydrothermal gold deposits in Korea and improve the efficiency of further exploration.

열수 금광상은 단층대 내에서 일어나는 열수 유체의 폭발적 흐름의 증거이며, 그로 인해 만들어지는 맥의 구조 및 조직은 열수유체 재분배 기작을 반영한다. 본 리뷰 논문에서는 열수 금광상의 형성을 야기하는 지각 내 유체 순환의 기작으로서 석션 펌프와 단층 밸브 모델을 소개하고 단층역학적인 측면에서 검토한다. 석션 펌프와 단층 밸브 모델은 (1) 지구조 응력의 누적과 유체압의 증가, (2) 지진성 단층파열에 따른 지구조 응력의 해소와 유체압의 감소가 주기적으로 발생됨에 따라 단층을 통해 불균질하게 발생하는 유체의 이동 및 맥의 형성 기작이다. 두 기작들이 작동하는 지질학적 환경과 응력 조건은 서로 상이하며, 결과적으로 형성된 맥의 구조 및 조직적 특성은 서로 공통점과 차이점을 가진다. 석션 펌프와 단층 밸브 모델은 향후 한국의 열수 금광상의 구조적 성인을 정교하게 해석하고 추가적인 탐사의 효율성을 제고하는데 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 연구는 한국연구재단 신진연구지원사업(2018R1C1B6003851)에 의해 지원되었으며, 더불어 2021년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원을 받아 수행되었다(데어터사이언스 기반 석유·가스 탐사 컨소시엄). 논문의 질적 향상을 위해 유익한 조언을 주신 두 익명의 심사위원께 감사를 표한다.

References

  1. Allen, A.R. (1979) Mechanism of frictional fusion in fault zones. J. Struct. Geol., v.1, p.231-243. https://doi.org/10.1016/0191-8141(79)90042-7
  2. Anderson, E.M. (1905) The dynamics of faulting. Trans. Edinburgh. Geol. Soc., v.8, p.387-402. https://doi.org/10.1144/transed.8.3.387
  3. Behrmann, J.H. (1991) Conditions for hydrofracture and the fluid permeability of accretionary wedges. Earth Planet. Sci. Lett. v.107, p.550-558. https://doi.org/10.1016/0012-821X(91)90100-V
  4. Blenkinsop, T., Tripp, G. and Gillen, D. (2018) The relationship between mineralization and tectonics at the Kainantu gold-copper deposit, Papua New Guinea. Geol. Soc. Spec. Publ., v.453, p.269-288. https://doi.org/10.1144/SP453.11
  5. Blenkinsop, T.G., Oliver, N.H.S., Dirks, P.G.H.M., Nugus, M., Tripp, G. and Sanislav, I. (2020) Structural geology applied to the evaluation of hydrothermal gold deposits. Rev. Econ. Geol., v.21, p.1-23.
  6. Bohlke, J.K. (1999) Mother Lode gold. In: Moores, E.M., Sloan, D. and Stout, D.L. (ed.) Classic cordilleran concepts: a view from California. Boulder, Geol. Soc. Am. Spec. Pap., v.338, p.55-67.
  7. Bons, P.D. (2000) The formation of veins and their microstructures. In: Jessell, M. W., Urai, J.L. (ed.), Stress, Strain and Structure, A volume in Honour of W D Means. VirtualExplorer., v.2, p.12.
  8. Bons, P.D., Elburg, M.A. and Gomez-Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. J. Struct. Geol., v.43, p.33-62. https://doi.org/10.1016/j.jsg.2012.07.005
  9. Boullier, A.M. and Robert, F. (1992) Palaeoseismic events recorded in Archaean gold-quartz vein networks, Val d'Or, Abitibi, Quebec, Canada. J. Struct. Geol., v.14, p.161-179. https://doi.org/10.1016/0191-8141(92)90054-Z
  10. Byerlee, J. (1978) Friction of rocks. Pure Appl. Geophys., v.116, p.615-626. https://doi.org/10.1007/BF00876528
  11. Caine, J.S., Bruhn, R.L. and Forster, C.B. (2010) Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada. J. Struct. Geol., v.32, p.1576-1589. https://doi.org/10.1016/j.jsg.2010.03.004
  12. Cho, D.-L. and Kwon. S.-T. (1994) Hornblende Geobarometry of the Mesozoic Granitoids in South Korea and the Evolution of Crustal Thickness. J. Geol. Soc. Korea. v.30, p.41-61.
  13. Choi, S., Pak, S.J., Choi, S. and Shin, H.J. (2001) Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea. Econ. Environ. Geol., v.34, p.25-38.
  14. Choi, S., Park, S., Kim, S., Kim, C. and Oh, C. (2006) Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting. Econ. Environ. Geol., v.39, p.567-581.
  15. Choi, S.-G., Kwon, S.-T., Lee, J.-H., So, C.S. and Pak, S.J. (2005a) Origin of Mesozoic gold deposits in South Korea. Isl. Arc, v.14, p.102-114. https://doi.org/10.1111/j.1440-1738.2005.00459.x
  16. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.-M., Kim, C.S. and Park, M.-E. (2005b) Cretaceous epithermal gold-sliver mineralization and geodynamic environment, Korea. Ore Geol. Rev., v.26, p.115-135. https://doi.org/10.1016/j.oregeorev.2004.10.005
  17. Cox, S.F. (1995) Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J. Geophys. Res. Solid Earth, v.100, p.12841-12859. https://doi.org/10.1029/95JB00915
  18. Cox, S.F. (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids, v.10, p.217-233. https://doi.org/10.1111/j.1468-8123.2010.00281.x
  19. Cox, S.F., Knackstedt, M.A. and Braun, J. (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev. Econ. Geol. v.14, p.1-24. https://doi.org/10.1130/REG14-p1
  20. Etheridge, M.A., Wall, V.J. and Vernon, R.H. (1983) The role of the fluid phase during regional metamorphism and deformation. J. Metamorph. Geol., v.1, p205-226. https://doi.org/10.1111/j.1525-1314.1983.tb00272.x
  21. Faulkner, D.R., Jackson, C.A.L., Lunn, R.J., Schlische, R.W., Shipton, Z.K., Wibberley, C.A.J. and Withjack, M.O. (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J. Struct. Geol., v.32, p.1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009
  22. Frost, E., Dolan, J., Ratschbacher, L., Hacker, B. and Seward, G. (2011) Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps. J. Geophys. Res. Solid Earth, v.116.
  23. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and Robert, F. (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev., v.13, p.7-27. https://doi.org/10.1016/S0169-1368(97)00012-7
  24. Gulyuz, N., Shipton, Z.K., Kuscu, I., Lord, R.A., Kaymakci, N., Gulyuz, E. and Gladwell, D.R. (2018) Repeated reactivation of clogged permeable pathways in epithermal gold deposits: Kestanelik epithermal vein system, NW Turkey. J. Geol. Soc. London, v.175, p.509-524. https://doi.org/10.1144/jgs2017-039
  25. Hubbert, M.K. and Rubey, W.W. (1959) Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull., v.70, p.115-166. https://doi.org/10.1130/0016-7606(1959)70[115:rofpim]2.0.co;2
  26. Jaeger, J.C., Cook, N.G.W. and Zimmerman, R.W. (2007) Fundamentals of Rock Mechanics. Blackwell, 475p.
  27. Kerrich, R. (1986) Fluid infiltration into fault zones: chemical, isotopic, and mechanical effects. Pure Appl. Geophys., v.124, p.225-268. https://doi.org/10.1007/BF00875727
  28. Kim, N., Park, S.-I. and Choi, J.-H. (2021) Internal architecture and earthquake rupture behavior of a long-lived intraplate strike-slip fault: A case study from the Southern Yangsan Fault, Korea. Tectonophysics, v.816, 229006. https://doi.org/10.1016/j.tecto.2021.229006
  29. Koh, S.M., Ryoo, C.R. and Song, M.S. (2003) Mineralization characteristics and structural controls of hydrothermal deposits in the Gyeongsang Basin, South Korea. Resour. Geol., v.53, p.175-192. https://doi.org/10.1111/j.1751-3928.2003.tb00168.x
  30. Kolb, J., Rogers, A., Meyer, F.M. and Vennemann, T.W. (2004) Development of fluid conduits in the auriferous shear zones of the Hutti Gold Mine, India: evidence for spatially and temporally heterogeneous fluid flow. Tectonophysics, v.378, p.65-84. https://doi.org/10.1016/j.tecto.2003.10.009
  31. Lee, H.K., Yoo, B.-C., Hong, D.P. and Kim, K.-W. (1995) Structural Constraints on Gold-Silver-Bearing Quartz Mineralization in Strike-slip Fault System, Samkwang Mine, Korea. Econ. Environ. Geol., v.28, p.579-585.
  32. Loucks, R.R. and Mavrogenes, J.A. (1999) Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science, v.284, p.2159-2163. https://doi.org/10.1126/science.284.5423.2159
  33. Micklethwaite, S., Ford, A., Witt, W. and Sheldon, H.A. (2015) The where and how of faults, fluids and permeability-insights from fault stepovers, scaling properties and gold mineralisation. Geofluids, v.15, p.240-251. https://doi.org/10.1111/gfl.12102
  34. Morris, A., Ferrill, D.A. and Henderson, D.B. (1996) Slip-tendency analysis and fault reactivation. Geology, v.24, p.275-278. https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
  35. Nadai, A. (1950) Theory of Flow and Fracture of Solids. McGraw-Hill, New York, v.1, p.572.
  36. Nguyen, P.T., Harris, L.B., Powell, C.M. and Cox, S.F. (1998) Fault-valve behaviour in optimally oriented shear zones: an example at the Revenge gold mine, Kambalda, Western Australia. J. Struct. Geol., v.20, p.1625-1640. https://doi.org/10.1016/S0191-8141(98)00054-6
  37. Oliver, N.H.S. and Bons, P.D. (2001) Mechanisms of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure. Geofluids, v.1, p.137-162. https://doi.org/10.1046/j.1468-8123.2001.00013.x
  38. Park, H.I. (1983) Ore and fluid inclusions of the Tongyeong gold-silver deposits. Econ. Environ. Geol., v.16, p.245-251.
  39. Park, S.-I. Kwon, S. Kim, S.W., Hong, P.S. and Santosh, M. (2018) A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence. J. Asian Earth Sci., v.157, p.166-186. https://doi.org/10.1016/j.jseaes.2017.08.009
  40. Park, S.-I., Noh, J., Cheong, H.J., Kwon, S., Song, Y., Kim, S.W. and Santosh, M. (2019) Inversion of two-phase extensional basin systems during subduction of the Paleo-Pacific Plate in the SW Korean Peninsula: Implication for the Mesozoic "Laramide-style" orogeny along East Asian continental margin. Geosci. Front., v.10, p.909-925. https://doi.org/10.1016/j.gsf.2018.11.008
  41. Peterson, E.C. and Mavrogenes, J.A. (2014) Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology, v.42, p.383-386. https://doi.org/10.1130/G35286.1
  42. Robb, L. (2005) Introduction to ore-forming processes. Blackwell publish, 144p.
  43. Robert, F. and Kelly, W.C. (1987) Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Econ. Geol., v.82, p.1464-1482. https://doi.org/10.2113/gsecongeo.82.6.1464
  44. Scholz, C.H. (1988) The brittle-plastic transition and the depth of seismic faulting. Geol. Rundsch., v.77, p.319-328. https://doi.org/10.1007/bf01848693
  45. Shelly, D.R., Taira, T.A., Prejean, S.G., Hill, D.P. and Dreger, D.S. (2015) Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm. Geophys. Res. Lett., v.42, p.5803-5812. https://doi.org/10.1002/2015GL064325
  46. Shelton, K.L., So, C.S. and Chang, J.S. (1988) Gold-rich mesothermal vein deposits of the Republic of Korea; geochemical studies of the Jungwon gold area. Econ. Geol., v.83, p.1221-1237. https://doi.org/10.2113/gsecongeo.83.6.1221
  47. Shimazaki, H., Lee, M.S., Tsusue, A. and Kaneda, H. (1986) Three Epochs of Gold Mineralization in South Korea. Min. Geol. v.36, p.265-272.
  48. Sibson, R.H. (1974) Frictional constraints on thrust, wrench and normal faults. Nature, v.249, p.542-544. https://doi.org/10.1038/249542a0
  49. Sibson, R.H. (1977) Fault rocks and fault mechanisms. J. Geol. Soc. London, v.133, p.191-213. https://doi.org/10.1144/gsjgs.133.3.0191
  50. Sibson, R.H. (1981) Fluid flow accompanying faulting: field evidence and models. In Simpson, D. W. and Richards, P.G., Earthquake prediction: an international review, Am. Geophys. Union. Maurice Ewing, v.4, p.593-603.
  51. Sibson, R.H. (1985) A note on fault reactivation. J. Struct. Geol., v.7, p.751-754. https://doi.org/10.1016/0191-8141(85)90150-6
  52. Sibson, R.H. (1986) Earthquakes and rock deformation in crustal fault zones. Annu. Rev. Earth Planet Sci., v.14, p.149-175. https://doi.org/10.1146/annurev.ea.14.050186.001053
  53. Sibson, R.H. (1987) Earthquake rupturing as a mineralizing agent in hydrothermal system. Geology, v.15, p.701-704. https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2
  54. Sibson, R.H. (1990) Conditions for fault-valve behaviour. Geol. Soc. Spec. Publ., v.54, p.15-28. https://doi.org/10.1144/GSL.SP.1990.054.01.02
  55. Sibson, R.H. (1992a) Earthquake faulting, induced fluid flow, and fault-hosted gold-quartz mineralization. In Bartholonew, M. J., Hyndman, D. W., Moogk, D. W. and Mason, R. (ed.). Basement Tectonics 8. Springer, Dordrecht, p.603-614.
  56. Sibson, R.H. (1992b) Fault-valve behavior and the hydrostatic-lithostatic fluid pressure interface. Earth Sci. Rev., v.32, p.141-144. https://doi.org/10.1016/0012-8252(92)90019-P
  57. Sibson, R.H. (1994) Crustal stress, faulting and fluid flow. Geol. Soc. Spec. Publ., v.78, p.69-84. https://doi.org/10.1144/GSL.SP.1994.078.01.07
  58. Sibson, R.H. (2001) Seismogenic framework for hydrothermal transport and ore deposition. Rev. Econ. Geol. v.14, p.25-50.
  59. Sibson, R.H. (2020) Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth, Planets Space, v.72, p.1-20. https://doi.org/10.1186/s40623-019-1127-2
  60. Sibson, R.H., Moore, J.M.M. and Rankin, A.H. (1975) Seismic pumping-a hydrothermal fluid transport mechanism. J. Geol. Soc. London, v.131, p.653-659. https://doi.org/10.1144/gsjgs.131.6.0653
  61. Sibson, R.H., Robert, F. and Poulsen, K.H. (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, v.16, p.551-555. https://doi.org/10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
  62. So, C.S. and Shelton, K.L. (1987a) Stable isotope and fluid inclusion studies of gold-and silver-bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea; Cheonan area. Econ. Geol., v.82, p.987-1000. https://doi.org/10.2113/gsecongeo.82.4.987
  63. So, C.S. and Shelton, K.L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydrothermal vein deposits, Yeoju mining district, Republic of Korea. Econ. Geol., v.82, p.1309-1318. https://doi.org/10.2113/gsecongeo.82.5.1309
  64. So, C.S., Chi, S.J. and Choi, S.H. (1987) Genetic Environments of the Geumryong Gold-Silver Deposit, Korea. J. Geol. Soc. Korea, v.23, p.321-330.
  65. So, C.S., Yun, S.T. and Kwon, S.H. (1999a) Fluid inclusion and stable isotope studies of mesothermal gold vein deposits in metamorphic rocks of central Sobaegsan Massif, Korea: Youngdong area. Econ. Environ. Geol., v.32, p.561-573.
  66. So, C.S., Yun, S.T., Heo, C.H. and Youm, S.J. (1999b) Geochemistry and genesis of mesothermal gold deposits in Korea: Base metal-rich gold mineralization of the Byungjibang mine, Hweongsung area. J. Min. Petro. Econ. Geol., v.94, p.65-82. https://doi.org/10.2465/ganko.94.65
  67. Stuwe, K. (1998) Tectonic constraints on the timing relationships of metamorphism, fluid production and gold-bearing quartz vein emplacement. Ore Geol. Rev., v.13, p.219-228. https://doi.org/10.1016/S0169-1368(97)00019-X
  68. Sugaki, A., Kim, O.J. and Kim, W.J. (1986) Gold and Silver Ores from the Geumwang Mine in South Korea and Their Mineralization. Min. Geol., v.36, p.555-572.
  69. Townend, J. and Zoback, M.D. (2000) How faulting keeps the crust strong. Geology, v.28, p.399-402. https://doi.org/10.1130/0091-7613(2000)28<399:HFKTCS>2.0.CO;2
  70. Twiss, R.J. and Moores, E.M. (1992) Structural geology. Macmillan. 64p.
  71. Weatherley, D.K. and Henley, R.W. (2013) Flash vaporization during earthquakes evidenced by gold deposits. Nat. Geosci., v.6, p.294-298. https://doi.org/10.1038/ngeo1759
  72. Weir, R.H. and Kerrick, D.M. (1987) Mineralogic, fluid inclusion, and stable isotope studies of several gold mines in the Mother Lode, Tuolumne and Mariposa counties, California. Econ. Geol., v.82, p.328-344. https://doi.org/10.2113/gsecongeo.82.2.328
  73. Woodcock, N.H., Dickson, J.A.D. and Tarasewicz, J.P.T. (2007) Transient permeability and reseal hardening in fault zones: evidence from dilation breccia textures. Geol. Soc. Spec. Publ., v.270, p.43-53. https://doi.org/10.1144/GSL.SP.2007.270.01.03
  74. Yang, S.J., Duuring, P. and Kim, Y.S. (2013) Structural genesis of the Eunsan and Moisan low-sulphidation epithermal Au-Ag deposits, Seongsan district, Southwest Korea. Miner. Depos., v.48, p.467-483. https://doi.org/10.1007/s00126-012-0443-2
  75. Zhou, Y., Xu, D., Dong, G., Chi, G., Deng, T., Cai, J., Ning, J. and Wang, Z. (2021) The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China. J. Struct. Geol., v.145, 104306. https://doi.org/10.1016/j.jsg.2021.104306