• Title/Summary/Keyword: Ordinary Portland Cement

Search Result 607, Processing Time 0.023 seconds

Physical Properties of Polymer Modified Mortar Containing FRP Wastes Fine Powder (폐FRP 미분말을 사용한 폴리머 시멘트 모르타르의 물성)

  • 황의환;한천구;최재진;이병기
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.190-198
    • /
    • 2002
  • In this research the physical properties of polymer modified mortar containing pulverized FRP(Fiber-Reinforced Plastics) wastes fine powder as a part of fine aggregate were investigated. Styrene-butadiene rubber(SBR) latex, polyacrylic ester(PAE) emulsion and ethylene-vinyl acetate(EVA) emulsion were used as Polymer modifier. Polymer modified mortars containing FRP wastes fine powder were prepared with various FRP wastes fine powder replacement(5∼30 wt%) for fine aggregate and polymer-cement ratios(5∼20 wt%). The water-cement ratio, water absorption rates and hot water immersion test, compressive and flexural strengths of polymer modified mortars were tested and the results compared to those of ordinary portland cement mortar. As the results, compressive and flexural strengths of polymer modified mortar containing FRP wastes fine powder depend on the contents of FRP wastes fine powder, type and additional amounts of polymer modifier. Some of them showed higher compressive and flexural strengths than those of ordinary portland cement mortar. Especially, SBR-modified mortar showed the highest strengths properties among three types of polymer modifier. Also water absorption rates, compressive and flexural strengths of SBR-modified mortar were more superior than those of PAE or EVA-modified mortar. The optimum mix proportions of SBR-modified mortar was 20 wt% of polymer-cement ratio and 20 wt% of FRP wastes fine powder replacement. Otherwise heat cured polymer modified mortar accelerated the improvement of early compressive and flexural strengths.

Effect of curing condition on strength of geopolymer concrete

  • Patil, Amol A.;Chore, H.S.;Dodeb, P.A.
    • Advances in concrete construction
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • Increasing emphasis on energy conservation and environmental protection has led to the investigation of the alternatives to customary building materials. Some of the significant goals behind understaking such investigations are to reduce the greenhouse gasemissions and minimize the energy required formaterial production.The usage of concrete around the world is second only to water. Ordinary Portland Cement (OPC) is conventionally used as the primary binder to produce concrete. The cement production is a significant industrial activity in terms of its volume and contribution to greenhouse gas emission. Globally, the production of cement contributes at least 5 to 7 % of $CO_2$. Another major problem of the environment is to dispose off the fly ash, a hazardous waste material, which is produced by thermal power plant by combustion of coal in power generation processes. The geopolymer concrete aims at utilizing the maximum amount of fly ash and reduce $CO_2$ emission in atmosphere by avoiding use of cement to making concrete. This paper reports an experimental work conducted to investigate the effect of curing conditions on the compressive strength of geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator.

Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash (분쇄된 플라이애시를 혼합한 3성분계 시멘트의 유동특성)

  • Park, Hyo-Sang;Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • In this study, rheological properties of ternary system cement containing ground fly ash(F3, Blaine specific surface area $8,100\;cm^2/g$) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below $10\;dynesec/cm^2$ of the plastic viscosity or below 50 cP of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible.

A Study on the Determination of the Removal Times of Form in Concrete Using Fly Ash Cement (플라이애시 시멘트를 사용한 콘크리트의 거푸집 존치기간 결정에 관한 연구)

  • Shin Byung-Cheol;Han Min-Cehol
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.185-191
    • /
    • 2006
  • In this paper, removal time of side form from concrete using OPC(ordinary Portland cement) and FAC(fly ash cement) are proposed by appling logistic model, which evaluates the strength development of concrete with maturity. W/B, types of cement and curing temperatures are adapted as test parameters. The estimation of strength development by logistic model has a good agreement between calculated values and measured ones. As for the removal times of form works suggested in this paper, as W/8 increases, curing temperature decreases and fly ash is used, removal time of side form is prolonged. Removal time of form from concrete using OPC suggested in this paper is shorter $2.5\~3.5$ days than those of KASS-5 (Korean Architectural Standard Specifications-5) in the range of over $20^{\circ}C$. And in the range of $10\~20^{\circ}C$ removal time of form is shorter than that of KASS-5 by as much as $4\~4.5$ days. The use of FAC results in an increase in removal time of form compared to that of OPC by about 1 day.

Use of Bentonite and Organobentonite as Alternatives of Partial Substitution of Cement in Concrete Manufacturing

  • Lima-Guerra, D.J.;Mello, I.;Resende, R.;Silva, R.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.15-26
    • /
    • 2014
  • In order to study the capacities of a new occurrence of Brazilian clay samples as partial replacements of cement, a bentonite sample was selected for utilization in the natural and modified forms for present study. The natural bentonite (BBT) was modified by anchorament of 3-aminopropyltrietoxisilane ($BBT_{APS}$) and 3,2-aminoethylaminopropyltrimetoxisilane (BBTAEAPS) in the surface of component minerals of bentonite sample. The original and organo-bentonite samples were characterized by elemental analysis, scanning electron microscopic and textural analyses. The values of micropore area were varying from $7.2m^2g^{-1}$ for the BBT to $12.3m^2g^{-1}$ for the $BBT_{AEAPS}$. The bentonite samples were characterized by the main variable proportion of bentonite in the natural and intercalated forms (2, 5, 10, 15, 20, 25, 30, and 35 % by weight of cement) in the replacement mode whiles the amount of cementations material. The workability, density of fresh concrete, and absorption of water decreased as the substitution of ordinary Portland cement by perceptual of natural and modified bentonite increased. The results reveal that workability decreased with decrease of the amount of natural bentonite in the concrete, same behavior is observed for bentonite functionalized, varying from 49 to 28 mm. The energetic influence of the interaction of calcium nitrate in the structure of blends was determined through the calorimetric titration procedure.

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

Determination of the Protecting Periods of Frost Damage at Early Age in Cold Weather Concreting (한중콘크리트의 초기 동해 방지를 위한 초기 양생기간의 산정)

  • 한천구;한민철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.47-55
    • /
    • 2000
  • Protections from the frost damage at early ages are one of the serious problems to be considered in cold weather concreting. Frost damage at early ages brings about the harmful influences on the concrete structures such as surface cracks and declination of strength development. Therefore, in this paper, protecting periods of frost damage at early ages according to the standard specifications provided in KCI(Korean Concrete Institute) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values and measured values. As W/B and compressive strength for protecting from frost damages at early ages increase, it is prolonged. It shows that the protecting periods of FAC(Fly Ash Cement) and BSC(Blast-furnace Slag Cement) concrete are longer than those of OPC(Ordinary Portland Cement) concrete. The protecting peridos from frost damage at early age by JASS are somewhat shorter than those by this paper.

Diffusion Characteristics for Chloride Ion of Concrete Subjected to Sulfate Attack (황산염 침투를 받은 콘크리트의 염소이온 확산특성)

  • Park, Jae-Im;Bae, Su-Ho;Yu, Jae-Won;Lee, Kwang-Myong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.213-214
    • /
    • 2010
  • An objective of this experimental research is to investigate the diffusion characteristics for chloride ion of concrete subjected to sulfate attack. For this purpose, concretes with three types of cement such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) containing mineral admixtures were made for water-binder ratios of 32% and 43%. The concrete specimens were immersed in sulfate solution for 365 days, and then the resistance against chloride ion penetration of them were estimated by using NT BUILD 492. It was observed from the test results that the resistance to chloride ion penetration of concrete subjected to sulfate attack was greatly decreased than that of standard curing concrete under the same age.

  • PDF

Proposition of the Removal Time of From Based on the Analysis of Strength Development of Concrete Using Blast-furnace Slag Cement (고로슬래그 시멘트를 사용한 콘크리트의 강도 증진 해석에 의한 거푸집 존치기간의 제안)

  • 표대수;유호범;한민철;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.163-168
    • /
    • 2000
  • In this paper, removal times of from from concrete using OPC( Ordinary Portland Cement) and BSC(Blast-furnace Slag cement) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values. As for the removal time of from suggested in this paper, as W/B increase, curing temperature decrease and BSC in used, removal they times of from are shown to be kept longer. Removal times of from from concrete using OPC suggested in this paper are shorter by about 2~3day than those of standard specifications provided in KCI in the rang of over $20^{\circ}C$, while they takes 4~5 day shorter compared with those of standard specifications Provided in KCI in the range of 10~$20^{\circ}C$. Removal times of from for concrete using OPC are longer than those using BSC by about 1 day.

  • PDF

Strength enhancement of concrete incorporating alccofine and SNF based admixture

  • Reddy, Panga Narasimha;Jindal, Bharat Bhushan;Kavyateja, Bode Venkata;Reddy, A. Narender
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • Cement is the most significant component in concrete. Large scale manufacturing of cement consumes more energy and release harmful products (Carbon dioxide) into the atmosphere that adversely affect the environment and depletes the natural resources. A lot of research is going on in globally concentrating on the recycling and reuse of waste materials from many industries. A major share of research is focused on finding cementitious materials alternatives to ordinary Portland cement. Many industrial waste by-products such as quartz powder, metakaolin, ground granulated blast furnace slag, silica fume, and fly ash etc. are under investigations for replacement of cement in concrete to minimize greenhouse gases and improve the sustainable construction. In current research, the effects of a new generation, ultra-fine material i.e., alccofine which is obtained from ground granulated blast furnace slag are studied as partial replacement by 25% and with varying amounts of sulfonated naphthalene formaldehyde (i.e., 0.3%, 0.35% and 0.40%) on mechanical, water absorption, thermal and microstructural properties of concrete. The results showed moderate improvement in all concrete properties. Addition of SNF with combination of alccofine showed a significant enhancement in fresh, hardened properties and water absorption test as well as thermal and microstructural properties of concrete.