• Title/Summary/Keyword: Ordinary Least Square

Search Result 181, Processing Time 0.259 seconds

패널회귀모형에서 회귀계수 추정량의 설계기반 성질 (Design-based Properties of Least Square Estimators in Panel Regression Model)

  • 김규성
    • 한국조사연구학회지:조사연구
    • /
    • 제12권3호
    • /
    • pp.49-62
    • /
    • 2011
  • 본 논문에서는 패널회귀모형에서 회귀계수 추정량으로 일반최소제곱추정량과 가중최소 제곱추정량의 설계기반 성질을 고찰한다. 회귀계수의 최소제곱추정량을 선형화하여 일반최소제곱추정량의 근사편향, 근사분산, 그리고 근사평균제곱오차의 수식과, 가중최소제곱추정량의 근사분산 수식을 유도한 후, 모의실험을 통하여 두 추정량의 근사분산 및 근사평균 제곱오차의 크기를 수치적으로 비교한다. 모의실험에서는 한국복지패널 3개년 데이터를 모집단으로 간주하고, 가구소득 변수를 관심변수로 하며 가구와 가구주 관련 7개 변수를 설명변수로 하는 유한모집단 회귀계수를 고려한다. 두 추정량의 설계기반 성질을 비교하기 위하여 표본수를 50에서 1,000까지 50 간격으로 설정하여 일반최소제곱추정량의 근사편향, 근사분산 그리고 가중최소제곱추정량의 근사분산을 계산한다. 모의실험을 통하여 다음과 같은 경향을 확인하였다. 첫째, 표본의 크기가 커지면 일반최소제곱추정량의 평균제곱오차가 가중최소제곱추정량의 분산보다 커진다. 둘째, 일반최소제곱추정량의 평균제곱오차를 가중최소제곱추정량의 분산으로 나눈비(ratio)는 설명변수에 따라 크기가 다르게 나타나고, 일반최소제곱추정량의 편향이 클수록 큰 값을 보인다. 셋째, 분산만 비교하면 일반최소제곱추정량의 분산이 가중최소제곱추정량의 분산보다 대부분의 경우에 더 작게 나타난다.

  • PDF

Reexamination of Estimating Beta Coecient as a Risk Measure in CAPM

  • Phuoc, Le Tan;Kim, Kee S.;Su, Yingcai
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제5권1호
    • /
    • pp.11-16
    • /
    • 2018
  • This research examines the alternative ways of estimating the coefficient of non-diversifiable risk, namely beta coefficient, in Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) that is an essential element of assessing the value of diverse assets. The non-parametric methods used in this research are the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator). The Jackknife, the resampling technique, is also employed to validate the results. According to finance literature and common practices, these coecients have often been estimated using Ordinary Least Square (LS) regression method and monthly return data set. The empirical results of this research pointed out that the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) performed much better than Ordinary Least Square (LS) in terms of eciency for large-cap stocks trading actively in the United States markets. Interestingly, the empirical results also showed that daily return data would give more accurate estimation than monthly return data in both Ordinary Least Square (LS) and robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) regressions.

포함확률비례추출에서 회귀계수 최소제곱추정량의 근사분산 (Approximate Variance of Least Square Estimators for Regression Coefficient under Inclusion Probability Proportional to Size Sampling)

  • 김규성
    • Communications for Statistical Applications and Methods
    • /
    • 제19권1호
    • /
    • pp.23-32
    • /
    • 2012
  • 본 논문은 유한모집단에서 회귀계수추정량의 근사편향과 근사분산을 다루고 있다. 유한모집단에서 고정크기 포함확률비례표본을 추출하고 이 표본에서 조사된 데이터에 기초하여 회귀계수를 일반최소제곱추정량과 가중최소제곱추정량으로 추정할 때 두 추정량의 편향, 분산 그리고 평균제곱오차의 근사식을 유도하였다. 그리고 두 추정량의 효율을 비교하기 위하여 두 추정량의 분산을 비교하는 필요충분조건을 제시하였다. 또한 수치적인 비교를 위하여 간단한 예제를 소개하였다.

A Recursive Data Least Square Algorithm and Its Channel Equalization Application

  • Lim, Jun-Seok;Kim, Jae-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권2E호
    • /
    • pp.43-48
    • /
    • 2006
  • Abstract-Using the recursive generalized eigendecomposition method, we develop a recursive form solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. Simulations demonstrate that DLS outperforms ordinary least square for certain types of deconvolution problems.

A Nonparametric Additive Risk Model Based on Splines

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.97-105
    • /
    • 2007
  • We consider a nonparametric additive risk model that is based on splines. This model consists of both purely and smoothly nonparametric components. As an estimation method of this model, we use the weighted least square estimation by Huller and Mckeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

A Nonparametric Additive Risk Model Based On Splines

  • 박철용
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.49-50
    • /
    • 2006
  • We consider a nonparametric additive risk model that are based on splines. This model consists of both purely and smoothly nonparametric components. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

뉴럴네트웍에 기반한 Data Least Squares를 사용한 채널 등화기 알고리즘 (A Channel Equalization Algorithm Using Neural Network Based Data Least Squares)

  • 임준석;편용국
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권2E호
    • /
    • pp.63-68
    • /
    • 2007
  • Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this neural network model to channel equalization. Simulations show that the neural network based DLS outperforms ordinary least squares in channel equalization problems.

A General Semiparametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권2호
    • /
    • pp.421-429
    • /
    • 2008
  • We consider a general semiparametric additive risk model that consists of three components. They are parametric, purely and smoothly nonparametric components. In parametric component, time dependent term is known up to proportional constant. In purely nonparametric component, time dependent term is an unknown function, and time dependent term in smoothly nonparametric component is an unknown but smoothly function. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

Consistency and Bounds on the Bias of $S^2$ in the Linear Regression Model with Moving Average Disturbances

  • Song, Seuck-Heun
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.507-518
    • /
    • 1995
  • The ordinary least squares based estiamte $S^2$ of the disturbance variance is considered in the linear regression model when the disturbances follow the first-order moving-average process. It is shown that $S^2$ is weakly consistent estimate for the disturbance varaince without any restriction on the regressor matrix X. Also, simple exact bounds on the relative bias of $S^2$ are given in finite sample sizes.

  • PDF

Exact Confidence Intervals on the Regression Coeffcients in Multiple Regression Model with Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.541-548
    • /
    • 1997
  • In regression model with nested error structure interval estimations on regression coefficients in different stages are proposed. Ordinary least square estimators and generalized least square estimators of the regression coefficients in this model are derived for between and within group model. The confidence intervals are dervied by using independent idstributional properties between regression coefficient estimators and quadratic froms obtained from the model.

  • PDF