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Abstract

Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data
least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this
neural network model to channel equalization. Simulations show that the neural network based DLS outperforms

ordinary least squares in channel equalization problems.
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|. Introduction

Linear least squares (LS) problems involve finding
"good” approximate solutions to a set of independent, but
inconsistent, linear eguations

Ax =D 1

where A 1s an /m X n complex data matrix; b is a
complex m X 1 observation vector; and x is a complex
n X 1 prediction vector, which is optimally chosen to
minimize some kind of squared error measure. It is usually
assumed that the underlying noiseless data satisfy (1)
with equality. Different classes of LS problems can be
defined in terms of the type of perturbation necessary to
achieve equality in the system of equations described by
(1). For example, in the ordinary least squares (OLS)
problem, the error (or perturbation) is assumed to lie in b.

Axos = (b+r) 2

where 1 is the residual error vector that corresponds to
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a perturbation in b. The OLS solution vector Xois is
chosen so that the Euclidean (or Frobenius) norm of r is
minimized. It is implicitly assumed in the OLS problem
that A is completely errorless, and therefore the columns
of A are not perturbed in the solution {l]. On the other
hand, the total least squares (TLS) problem assumes
error in both A and b.

(A+E)xms = (b+r) 3

The TLS solution vector 1s chosen so that the Euclidean
norm of [E r] is minimal. Another interesting case that is
described and solved in this correspondence assumes that
errors occur in A but not b. We call this case the data
least squares (DLS) problem because the error is
assumed to lie in the data matrix A as indicated by

(A+E)xpis = b @

DeGroat, et. al. in [2] developed a close form solution
to (4) and demonstrated that it outperformed OLS and
TLS in case of noisy data matrix. However, the solution
was a kind of batch type algorithm.

In this paper, we propose a neural network model for
DLS solution with a neural network model for oriented
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principal component analysis (OPCA). We applied this
neural network model to channel equalization. Stmulations
for the performance comparison show that the proposed

DLS network outperforms ordinary least squares tn

symbol error rate {SER).

Il. Generalized Total Least Squares
Problem

Given an unknown system with finite impulse response
and assuming that both the input and output are corrupted
by the Gaussian white noise, the system should be

estimated from the noisy observation of the input and
output, as Fig.1. The unknown system is described by

h= [hg, hyyeoe by ] ECN T (5)

where h may be time—varying or time—invariant. The
output is given by

d(ny=x"(mh+n,(n) ®)
where the output noise m,(n) is a Gaussian white noise
with variance @, and independent of the input signal, and
the noise free input vector is represented as

x{n) = {z{n),z(n—=1),-,2(n— N+ 1)]¥ ¥!

The noisy input vector of the system is given by

X(m)=x(n) +n,(m)eC™" (8

Unknown System

X
Adaptive System

/ e(t)

Fig. 1, The model of generalized total least square,

ni(t)
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where n;{n)=[n;{n)n;(n~1),,n,{n—AN+1)]" and the

input noise n;(n} is the Gaussian white noise with variance
2

[

(23

Notice that the input noise may originate from the
measured error, interference, quantized noise and so on,
Hence, we adopt a more general signal model than the
least squares based estimation. Moreover, the augmented
data vector is defined as

x(my=[%7 (), d(m] e ©

The correlation matrix of the augmented data vector has
the following structure

et
p? ¢ (10

where p=E{X(n)d (M} and ¢=Edemd (n)},
R=ERMI"())}=R+0?1, R=Exmx"(n}. We can further

establish that P=R"h and ¢ =h"Rh+o],
Deline the constrained Rayleigh quotient as

[w’ ~IR[w" ~1}"
fw” —1ID{w’ 11" (1

J(w)=

T _a
where °=[ 0 y] with 7~ a7 [3). The generalized total least

square solution is obtained by solving

min.J(w) (12)

DLS is a special case in (11) with =0 [3].

[Il. Oriented PCA and Its Neural Network
Model

3.1, Oriented PCA (OPCA)
[n this standard principal
component analysis problem by introducing OPCA [4,5]

section we extend the

which corresponds to the generalized eigenvalue problem



of two random signals and bears the same relationship to
generalized eigenvalue decomposition (GED) as PCA bears
to ordinary eigenvalue decomposition (ED). More
precisely, the goal is to find the direction vector w that
maximizes the signal—to—signal ratio

_E{(®"x,)’}  WRW
OFC T E{W7x, P} WYR,W (13)

where R, =E{xx/'} and R, =E{x,x;'}. We assume that R,
is strictly positive definite, hence nonsingular, Quite often
{xi} and {xa}are stationary stochastic processes,
whence R,=E{x;x;} and R.=E{x;X3}and OPCA is still
defined via (13). As usual there is little difference
between random vectors and stationary random processes,
and we'll use the term OPCA for both cases
interchangeably.

The optimal solution to {13} will be called the principal
oriented component of the pair (x1, X2). Referring to Fig.
2, the adjective “oriented” is justified by the fact that the
principal
distribution of x3: it will be oriented toward the directions
where v has minimum energy whiie trying to maximize the
projection energy of Xi. Jope 1S nothing but the generalized
Rayleigh quotient for the matrix pencil (Ri,R;), so the
principal oriented component is the principal generalized
eigenvector of the symumetric generalized eigenvalue
problem [4,5].

component of x; i1s now steered by the

R,w=AR,W (14)

wpe

Fig. 2, A visual interpretation of oriented principal component
analysis: although the principal component Wpe is along
the major axis of the signal, the oriented principal
component Wopc is steered by the distrbution of the
noise,

3.2. Network Models for OPC Extraction

If we initially focus on the extraction of the first
component in [4,5], the maximum value of Jo in (13} is
the principal generalized eigenvalue A,. Therefore, the
function

o | =
V(W)= 5(/?1 ~J opc (W) (15)

is such that ¥(W)>0 and Y(W)=0 only for W=e,, 50 V
may serve as a Lyapunov energy function for a system to
be proposed. The proper gradient descent algorithm would
be

o = H
ﬂw_=_vy=~”1 _ Rlﬁ_‘:'ﬁ
dt W R, w w

RW sz]
R, w

with the globally asymptotically stable fixed point #=e,.
In fact, even the simpler equation

{16}

A ~Hn ~
iw_=[niﬁ_g_lﬂnzﬁ]
R

dt wiR,w (17
is stable since
H ~Huoy 2
W W oyt RF-TRIp Gl <o
d ar wiR,W WIR,W (18)

and again the point W=e¢ is the globally asymptotically
stable attractor.

YorZ
w
in1 in2 ‘na [ E N R NN N RN Inn
X or Xz

Fig, 3, OPC linear neuron unit,
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IV. Neural Network-based Data Least

Squares Algorithm
We can apply the generalized cigendecomposition
method in section I to solution of DLS. If we modify
(11) and {12), the object function for DLS becomes as
follows.

%' Dw _ [w" —1D[w’ -]
WYRw  [w? -1R[w 1] (19

F(w)=

The DLS solution can be derive as (20). We apply the
recursive algorithm in section III for the maximization of
(20).

maxJ(®) 4 then w=W(l: NY(-F(N +1)) 0

where W(:N) s a vector with the elements [rom the
1-5stto the N—th, and W(N +1) is the (A*+1)—th element

in w. When we apply the OPCA to (19), we have a
update equation.

AW = W((w”im‘nw — (W"DW)RW) -
\;/(n) = v;(r_r,v— 1)
,B(WH’(ZZ— DR{n)w(n—1)Dwin—1) 22)
— Bw¥(n—1)w{n— 1)Rn)wln—1)
where

Table |, OPCA BASED Data LeastSquare {NN-DLS) Algorithm,

1. Initialize 2/, 8 ,X(0)=[x"(0), d(®)], §(0)=[wT(0), 1]
with the w(0} € C"*' 10 a random vector

2. Fill the matrix Q(0) = C¥*" with small random values
Forj) 0

3. Compute 2(j)=w"(j -1)x())

4. Update R as R()N=A,RG-D+x()Hx"())

5. Compute 2,(J}=R(NW( -1} and 2,()=W"(j-Dz,(/)

6. Update the weight vector as
W(.!’)=W(j—|}+ﬂ(zz(j)l_)ﬁ(f—l)—(W"(j—|)W(J'-|))2.U})

7. Normalize the weight vector

8, W) =W(:n-D/(-W(n+1) loop
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R(n) = A, R(n-1)+X(m)X"(n) and 1, isa forgetting factor

We summarize the algorithm in table 1.

V. A Channel Equalization Application

In this section, we demonstrate the usefulness of the
DLS method by comparing it with the optimal method and
OLS methods when applied to a channel equalization
problem. The channel equalization problem is graphically
described by the block diagram in Fig. 4. Basically, the
solution vector, w = [wi, wa, -, wp]T represents an FIR
approximant inverse filter to the channel characteristic
H(z). The output of the inverse (equalization) filter can
be written in matrix form using the output of the channel
as input to the finite impulse response (FIR) equalization
filter. The output of the equalized channel should be
approximately equal to the original input

UO w] Sp—l
L W2 ~ SP (23)
V—p

Vv—1" Un—p+1 Y

Sp-1 Yy—1 ™
S}) — 'Up e 'U2

SN2

where pis the FIR filter order; and N is the total number
of output samples. In this problem, we assume that the
left side in (23) is known without error because the input
tramming signal is assumed to be known without error. It is
easy to see that (23) has the form of (4).

Sl pin] D vin]
{a) nin]
d[n] .

T w*[n) — f<> e[n]

N
)

Fig. 4. Transmission and Equalization model: {a) received signal
model, (b) equalizer model (s[n]:transmitted signal, h[n):
channel mode!, n[n}. additive noise, v[njreceived signal,
d[n):training signal),



For the simulation, a well—known complex nonminimum—
phase channel model introduced by Cha and Kassam [6] is
used {o evaluate the proposed neural network based data
least square (NN-DLS) equalizer performance for 4—
PAM signaling. Although the length of the channel is
short, the channel model cannot only simulate the phase
change from boundary reflection but also do the
nonminimum phase characteristics of the channel in the
room acoustics or in the underwater communication. The
channel output v(n) (which is also the input of the
equalizer) is given by

W) =(0.34— j0.27)s(n) +(0.87+ j0.43)s(n—1)
+(0.34- jO2)s(n-2)+n(r), n(m ~ N(0,0.01) 24

where N(0, 0.01) means the white Gaussian noise (of the
nonminimum—phase channel) with mean 0 and variance
0.01. 4—PAM symbol sequence s(n) is passed through the
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Fig. 5. Performance comparison of three equalizers: (a) scatter
diagram of received signals, (b} scatter diagram of optimal
{Wiener Solution) equalizer, (¢} scatter diagram of LMS
equalizer, (d) scatter diagram of the proposed equalizer,

SymbolEror Rate

SNR [cB]
Fig. 6. SER comparison in 4-PAM signaling (-*-: the proposed
algorithm, -o-: LMS algorithm),

channel and the sequence s(n) are valued from the set
{£1, £3}. All the equalizers, the least mean square
(LMS) based equalizer and the proposed NN—DLS based
equalizer, were trained with 1000 data symbols at 15 dB
SNR. The LMS is an simple adaptive algorithm for the
OLS problem. The order of equalizer is set to 7.

Fig. 5 (a) shows the distribution of the input data of the
different equalizers. This figure shows received signals
scattered severely due to transmission channel effect. Fig.
5 (b), (¢) and (d) show the scatter diagrams of the
outputs of the three equalizers, optimal (Wiener solution),
LMS based and the NN—DLS bhased, respectively. As
observed from Fig. 5, the equalized signal by the proposed
algorithm centres on {1, £3}and it is almost the same
as the equalized signals by the optimal equalizer which is
derived from the Wiener solution. It leads the conclusion
that the proposed NN-DLS outperforms the LMS
algorithm. Moreover, it estimates almost the same as
optimal equalizer.

For the performance comparison, we show the symbol
error rate (SER) for the proposed equalizer and an
LMS—hased equalizer. They were trained in several SNRs,
from 0 dB to 20 dB. We set the step—size to 10™ for
both equalizers. Fig. 6shows the SER in the above linear
nonminmum phase channel with 4—PAM sequences. It
shows that the proposed algorithm outperforms the
LMS~—based equalizer in the entire SNR range. Therefore,
the proposed DLS algorithm outperforms the OLS
algorithm.,

VI. Conclusion

In this paper, we proposed a recursive algorithm for
data least square (DLS) solution. Channel equalization
simulations were performed to compare the proposed

algorithm with the algorithms in OLS and we found better
performance over OLS methods.
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