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Abstract

Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data 

least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this 

neural network model to channel equalization. Simulations show that the neural network based DLS outperforms 

ordinary least squares in channel equalization problems.
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I. Introduction

Linear least squares (LS) problems involve finding 

"good" approximate solutions to a set of independent, b나t 

inconsistent, linear equations

Ax = b (1)

where A is an m x n complex data matrix； b is a 

complex m x 1 observation vector； and x is a complex 

n X 1 prediction vector, which is optimally chosen to 

minimize some kind of squared error measure. It is usually 

assumed that the underlying noiseless data satisfy (1) 

with equality. Different classes of LS problems can be 

defined in terms of the type of perturbation necessary to 

achieve equality in the system of equations described by 

(1). For example, in the ordinary least squares (OLS) 

problem, the error (or perturbation) is assumed to lie in b.

Axqls = (b+r) (2)

where r is the residual error vector that corresponds to
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a perturbation in b. The OLS solution vector xols is 

chosen so that the Euclidean (or Frobenius) norm of r is 

minimized. It is implicitly assumed in the OLS problem 

that A is completely errorless, and therefore the columns 

of A are not perturbed in the solution [1]. On the other 

hand, the total least squares (TLS) problem assumes 

error in both A and b.

(A+E)xTls = (b+r) (3)

The TLS solution vector is chosen so that the Euclidean 

norm of [E r] is minimal. Another interesting case that is 

described and solved in this correspondence assumes that 

errors occur in A but not b. We call this case the data 

least squares (DLS) problem because the error is 

assumed to lie in the data matrix A as indicated by

(A+E)xdls = b ⑷

DeGroat, et. al. in [2] developed a close form solution 

to (4) and demonstrated that it outperformed OLS and 

TLS in case of noisy data matrix. However, the solution 

was a kind of batch type algorithm.

In this paper, we propose a neural network model for 

DLS solution with a neural network model for oriented 
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principal component analysis (OPCA). We applied this 

neural network model to channel equalization. Simulations 

for the performance comparison show that the proposed 

DLS network outperforms ordinary least squares in 

symbol error rate (SER).

II. Generalized Total Least Squares 
Pro 이 em

Given an unknown system with finite impulse response 

and assuming that both the input and output are corrupted 

by the Gaussian white noise, the system should be 

estimated from the noisy observation of the input and 

output, as Fig.l. The unknown system is described by

h=[如如…，软 + i (5)

where h may be time-varying or time-invariant. The 

output is given by

旳) = x"(〃)h +气0) (6)

where the output noise n0(n) is a Gaussian white noise 

with variance 就 and independent of the input signal, and 

the noise free input vector is represented as

x(77.) = [x (n\x(n— 1a; (n — 7V+ 1)]T (7)

The noisy input vector of the system is given by

双")=乂(”)+ 11,(")£(75' ⑻

Fig. 1. The model of generalized total least square.

where njn) = and the

input noise n；(n) is the Gaussian white noise with variance

Notice that the input noise may originate from the 

measured error, interference, quantized noise and so on. 

Hence, we adopt a more general signal model than the 

least squares based estimation. Moreover, the augmented 

data vector is defined as

#〃) = [*("),旳)"(*5사 ⑼

The correlation matrix of the augmented data vector has 

the following structure 

where p = E{的?)d*(打)} and c = 끼旳)/(m)},

食=E{急)?)+ r = e{x(〃)x%z)}, We can further

establish that p = R"h and。=时每1 +。土

Define the constrained Rayleigh quotient as

叵U迪土攻

[wr-l]D[wr,-l]H (11)

-Ji o] 尸 = 으】

where [o r\ with o-,2 [3]. The generalized total least 

square solution is obtained by solving

理n") (12)

DLS is a special case in (11) with =0 [3].

III. Oriented RCA and Its Neural Network
Model

3.1. Oriented PCA (OPCA)
In this section we extend the standard principal 

component analysis problem by introducing OPCA [4,5] 

which corresponds to the generalized eigenvalue problem 

64 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.26, NO.2E



of two random signals and bears the same relationship to 

generalized eigenvalue decomposition (GED) as PCA bears 

to ordinary eigenvalue decomposition (ED). More 

precisely, the goal is to find the direction vector w that 

maximizes the signal-to-signal ratio

_£((whx1)2}_w//R1w 
아‘c = E{(yiHx2)2} = w^R^w (13)

where 珥=研】甲【：} and 日2 =硏乂2遺}, We assume that R2 

is strictly positive definite, hence nonsingular. Quite often 

(xik) and {x2k}are stationary stochastic processes, 

whence 珥=硏气式} and R2 =^(x2ax2a)and OPCA is still 

defined via (13), As usual there is little difference 

between random vectors and stationary random processes, 

and we'll use the term OPCA for both cases 

interchangeably.

The optimal solution to (13) will be called the principal 

oriented component of the pair (xi, X2). Referring to Fig. 

2, the adjective “oriented” is justified by the fact th간t the 

principal component of xi is now steered by the 

distribution of X2： it will be oriented toward the directions 

where v has minimum energy while trying to maximize the 

projection energy of xi. Jopc is nothing but the generalized 

Rayleigh quotient for the matrix pencil (Ri’RD, so the 

principal oriented component is the principal generalized 

eigenvector of the symmetric generalized eigenvalue 

problem [4,5],

3.2. Network Mod이s for OPC Extraction
If we initially focus on the extraction of the first 

component in [4,5], the maximum value of Jopc in (13) is 

the principal generalized eigenvalue A,. Therefor•은, the 

function

Hw) = |(A--/OpC(w)) (15)

is such that F(W)>0, and F(즈‘) = 0 only for w = so V 

may serve as a Lyapunov energy function for a system to 

be proposed. The proper gradient descent algorithm would 

be

竺 = -叫 = 1 R 冲-辭로 R彼 

dt whR2w^ 1 whR2w 2 (16)

with the globally asymptotically stable fixed point 讦=勻.

In fact, even the simpler equation

井岑쏞 5
(17)

is stable since

으 = Ew = _ 

dt dt (18)

RjW = AR2w (14)
and again the point 

stable attractor.

w = ej is the globally asymptotically

Fig, 2. A visual interpretation of oriented principal component 
analysis: although the principal component Wpc is along 
the major axis of the signal, the oriented principal 
component Wopc is steered by the distribution of the 
noise.

一丿

V”
Xi or X2 

Fig. 3, OPC linear neuron unit.
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IV. Neural Network-based Data Least 
Squares Algorithm

We can apply the generalized eigendecomposition 

method in section III to solution of DLS. If we modify 

(11) and (12), the object function for DLS becomes as 

follows.

7(w)=时卬」时,-1]卬广,-1]「

"whRw - [",-1画",一1]「 (19)

The DLS solution can be derive as (20). We apply the 

recursive algorithm in section III for the maximization of 

(20).

‘쪟X 7(w), and then w = w(l: TV) /(-W(7V +1)) (20)

where w(i: N) is a vector with the elements from the 

1 st to the N~th, and WN + D is the (AA-l)-th element 

in w. When we apply the OPCA to (19), we have a 

update equation.

애 = 而万京希（（铲丽）丽 -（铲员丽）

(21)

w(n) = w(7i— 1)

l)R(n)w(n— l))Dw(n— 1) (22)

—l)w(n— l))R(n)w(n— 1)

where

R(")=人见。-1) + x(w)xH (〃)and is a forgetting factor 

We summarize the algorithm in table 1.

V. A Channel Equalization Application

In this section, we demonstrate the usefulness of the 

DLS method by comparing it with the optimal method and 

OLS methods when applied to a channel equalization 

problem. The channel equalization problem is graphically 

described by the block diagram in Fig. 4. Basically, the 

solution vector, w = [wi, W2,…，wp]T represents an FIR 

approximant inverse filter to the channel characteristic 

H(z), The output of the inverse (equalization) filter can 

be written in matrix form using the output of the channel 

as input to the finite impulse response (FIR) equalization 

filter. The output of the equalized channel should be 

approximately equal to the original input 

sp- 1

=

S/v—1

(23)

Wi Sp- 1

… ％ % w2 SP

VN- 1 ■" VN-p+ 1 vN-p_ wL pJ S N— 1.

where p is the FIR filter order； and TV is the total number 

of output samples. In this problem, we assume that the 

left side in (23) is known without error because the input 

training signal is assumed to be known without error. It is 

easy to see that (23) has the form of (4).

Ta이e I. OPCA BASED Data LeastSquare (NN-DLS) Algorithm.

1. Initialize 虱0) = [x「(0), d(0)], w(0) = [wT(0), -1] 

with the w(0) e CNx1 to a random vector

2. Fill the matrix Q(0) e CNxN with small random values 

For j > 0

3. Compute z(丿)=时(丿 -1)瓦/)

4. Update R as RO)그九/R(丿一D +虱丿厅"(J)

5. Compute 弓(丿)=豆(力讦(丿—1) and ^2(J)=

6. Update the weight vector as

= W(J-1) + 旅2(j)Dw(j(7 -l)w(j 一l))Z](丿))

7. Normalize the weight vector

8. w(丿)드机1 顼一 1)/(—毎(方 + 1)) loop

s[n]
* h[미

(a) n[n]

v[n]

(b)
Fig. 4. Transmission and Equalization model： (a) received signal 

model, (b) equalizer model (s[n]:transmitted signal, h[n]: 
channel model, r|[n]: additive noise, v[n]:received signal, 
d[n]:training signal).

袞e骨
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For the simulation, a well-known complex nonminimum— 

phase channel model introduced by Cha and Kassam [6] is 

used to evaluate the proposed neural network based data 

least square (NN-DLS) equalizer performance for 4- 

PAM signaling. Although the length of the channel is 

short, the channel model cannot only simulate the phase 

change from boundary reflection but also do the 

nonminimum phase characteristics of the channel in the 

room acoustics or in the underwater communication. The 

channel output v(n) (which is also the input of the 

equalizer) is given by

v(n) = (0.34-顶 0.27)s(”) + (0.87+J0A3)s(n -1)

+ (0.34-j0.21)5(h 一 2) + 〃(0), 7j(n)〜A^(0,0.01) (24) 

where N(0, 0.01) means the white Gaussian noise (of the 

nonminimum-phase channel) with mean 0 and variance 

0.01. 4-PAM symbol sequence s(n) is passed through the

diagram of received signals, (b) scatter diagram of optimal 
(Wiener S이ution) equalizer, (c) scatter diagram of LMS 
equalizer, (d) scatter diagram of the proposed equalizer.

Fig. 6. SER comparison in 4-PAM signaling the proposed 
algorithm, -o-: LMS algorithm).

channel and the sequence s(n) are valued from the set 

{士1, ±3}. All the equalizers, the least mean square 

(LMS) based equalizer and the proposed NN-DLS based 

equalizer, were trained with 1000 data symbols at 15 dB 

SNR. The LMS is an simple adaptive algorithm for the 

OLS problem. The order of equalizer is set to 7.

Fig. 5 (a) shows the distribution of the input data of the 

different equalizers. This figure shows received signals 

scattered severely due to transmission channel effect. Fig. 

5 (b), (c) and (d) show the scatter diagrams of the 

outputs of the three equalizers, optimal (Wiener solution), 

LMS based and the NN-DLS based, respectively. As 

observed from Fig. 5, the equalized signal by the proposed 

algorithm centres on {±1, ±3land it is almost the same 

as the equalized signals by the optimal equalizer which is 

derived from the Wiener solution. It leads the conclusion 

that the proposed NN-DLS outperforms the LMS 

algorithm. Moreover, it estimates almost the same as 

optimal equalizer.

For the performance comparison, we show the symbol 

error rate (SER) for the proposed equalizer and an 

LMS-based equalizer. They were trained in several SNRs, 

from 0 dB to 20 dB. We set the step-size to IO-4 for 

both equalizers. Fig. 6shows the SER in the above linear 

nonminmum phase channel with 4一PAM sequences. It 

shows that the proposed algorithm outperforms the 

LMS-based equalizer in the entire SNR range. Therefore, 

the proposed DLS algorithm outperforms the OLS 

algorithm.

VI. Conclusion

In this paper, we proposed a recursive algorithm for 

data least square (DLS) solution. Cham이 equalization 

simulations were performed to compare the proposed 

algorithm with the algorithms in OLS and we found better 

performance over OLS methods.
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