• Title/Summary/Keyword: Orbit plot

Search Result 5, Processing Time 0.021 seconds

RESONANCE EFFECT ON THE GEOSYNCHRONOUS ORBIT DUE TO THE NON-ZONAL GEOPOTENTIAL (지구 비대칭 중력장이 정지위성에 미치는 효과)

  • 박종욱;문인상;최규홍;최용석
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.23-35
    • /
    • 1990
  • Resonance effect on the orbital elements of geosynchronous artificial satellite due to the non-zonal geopotential has been calculated. For the perturbation of a artificial satellite, perturbation effects due to the non-zonal geopotential is less than due to the $J_2$ or Luni-Solar perturbation, but non-zonal harmonics resonance exist. So, we calculate the perturbation of geosynchronous artificial satellite orbit due to the non-zonal harmonics resonance. The effect on the orbit eccentricity of non-zonal harmonics resonance is represented by a phase plane plot of ec. The effect on the orbit eccentricity of non-zonal harmonics resonance is represented by a phase plane plot of $e_c$ verse $e_s$. The evolution of mean longitude and semi-major axis are obtained.

  • PDF

Evolution of the Orbital Elements for Geosynchronous Orbit of Communications Satellite, II -North-South Station Keeping- (정지 통신 위성의 궤도에 대한 궤도요소의 진화 II -남북 방향의 궤도 보존-)

  • 최규홍;박재우;김경미
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.25-33
    • /
    • 1987
  • For a geostationary satellite north-south keeping maneuver must control the inclination elements. The effects on the orbit plane of maneuvers and natural perturbations may be represented by a plane plot of Wc versus, Ws, since these inclination elements represent the projection of the major axis and the inclination elements are obtained.

  • PDF

A Development of Satellite Communication Link Analysis Tool

  • Ayana, Selewondim Eshetu;Lim, SeongMin;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.117-129
    • /
    • 2020
  • In a Satellite communication system, a link budget analysis is the detailed investigation of signal gains and losses moving through a channel from a sender to receiver. It inspects the fading of passed on data signal waves due to the process of spreading or propagation, including transmitter and receiver antenna gains, feeder cables, and related losses. The extent of the proposed tool is to make an effective, efficient, and user-friendly approach to calculate link budget analysis. It is also related to the satellite communication correlation framework by building up a graphical interface link analysis tool utilizing STK® software with the interface of C# programming. It provides better kinds of graphical display techniques, exporting and importing data files, printing link information, access data, azimuth-elevation-range (AER), and simulation is also possible at once. The components of the link budget analysis tool include transmitter gain, effective isotropic radiated power (EIRP), free space loss, propagation loss, frequency Doppler shift, flux density, link margin, elevation plot, etc. This tool can be useful for amateur users (e.g., CubeSat developers in the universities) or nanosat developers who may not know about the RF communication system of the satellite and the orbital mechanics (e.g., orbit propagators) principle used in the satellite link analysis.

Spin and 3D shape model of Mars-crossing asteroid (2078) Nanking

  • Kim, Dong-Heun;Choi, Jung-Yong;Kim, Myung-Jin;Lee, Hee-Jae;Moon, Hong-Kyu;Choi, Yong-Jun;Kim, Yonggi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.80.1-80.1
    • /
    • 2019
  • Photometric investigations of asteroids allow us to determine their rotation states and shape models (Apostolovska et al. 2014). Our main target, asteroid (2078) Nanking's perihelion distance (q) is 1.480 AU, which belongs to the Mars-crossing asteroid (1.3 < q < 1.66 AU). Mars-crossing asteroids are objects that cross the orbit of Mars and regarded as one of the primary sources of near-Earth asteroids due to the unstable nature of their orbits. We present the analysis of the spin parameters and 3D shape model of (2078) Nanking. We conducted Cousins_R-band time-series photometry of this asteroid from November 26, 2014 to January 17, 2015 at the Sobaeksan Optical Astronomy Observatory (SOAO) and for 25 nights from March to April 2016 using the Korea Microlensing Telescope Network (KMTNet) to reconstruct its physical model with our dense photometric datasets. Using the lightcurve inversion method (Kaasalainen & Torppa 2001; Kaasalainen et al. 2001), we determine the pole orientation and shape model of this object based on our lightcurves along with the archival data obtained from the literatures. We derived rotational period of 6.461 h, the preliminary ecliptic longitude (${\lambda}_p$) and latitude (${\beta}_p$) of its pole as ${\lambda}_p{\sim}8^{\circ}$ and ${\beta}_p{\sim}-52^{\circ}$ which indicates a retrograde rotation of the body. From the apparent W UMa-shaped lightcurve and its location in the rotation frequency-amplitude plot of Sheppard and Jewitt (2004), we suspect the contact binary nature of the body (Choi 2016).

  • PDF