• Title/Summary/Keyword: Optoelectronic properties

검색결과 224건 처리시간 0.026초

유기금속증착법에 의한 $IN_1-x$$Ga_x$$As_y$$P_1-y$/INP의 성장시 성장변수가 에피층의 전기적, 광학적 특성에 미치는 영향

  • 유지범;김정수;장동훈;박형호;오대곤;이용탁
    • ETRI Journal
    • /
    • 제13권4호
    • /
    • pp.70-79
    • /
    • 1991
  • $In_1-x$$GA_X$$As_y$$P_1-y$ has a very wide range of applications in optoelectronic devices especially for optical communications because $In_1-x$$GA_X$$As_y$$P_1-y$ has the bandgap of the lowest dispersion ($1.3\mum$) and the lowest loss ( $1.55\mum$) of the optical fiber by changing the composition. The quality of $In_1-x$$GA_X$$As_y$$P_1-y$ epitaxial layer is believed to have a significant effect on the performance of device. The OMVPE growth conditions for the latticematched $In_1x$$GA_X$$As_y$$P_1-y$/InP were investigated. Effects of growth conditions such as V/III ratio, growth temperature, and Ga source material on the electrical and optical properties were studied. The composition, electrical and optical properities of $In_1-x$$GA_X$$As_y$$P_1-y$ were characterized using double crystal X-ray diffractometer (DCD), photoluminescence (PL), XPS(ESCA) and Hall measurement.

  • PDF

고효율 적층형 태양전지를 위한 유무기 페로브스카이트 (Organic-Inorganic Perovskite for Highly Efficient Tandem Solar Cells)

  • 박익재;김동회
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.146-169
    • /
    • 2019
  • To overcome the theoretical efficiency of single-junction solar cells (> 30 %), tandem solar cells (or multi-junction solar cells) is considered as a strong nominee because of their excellent light utilization. Organic-inorganic halide perovskite has been regarded as a promising candidate material for next-generation tandem solar cell due to not only their excellent optoelectronic properties but also their bandgap-tune-ability and low-temperature process-possibility. As a result, they have been adopted either as a wide-bandgap top cell combined with narrow-bandgap silicon or CuInxGa(1-x)Se2 bottom cells or for all-perovskite tandem solar cells using narrow- and wide-bandgap perovskites. To successfully transition perovskite materials from for single junction to tandem, substantial efforts need to focus on fabricating the high quality wide- and narrow-bandgap perovskite materials and semi-transparent electrode/recombination layer. In this paper, we present an overview of the current research and our outlook regarding perovskite-based tandem solar technology. Several key challenges discussed are: 1) a wide-bandgap perovskite for top-cell in multi-junction tandem solar cells; 2) a narrow-bandgap perovskite for bottom-cell in all-perovskite tandem solar cells, and 3) suitable semi-transparent conducting layer for efficient electrode or recombination layer in tandem solar cells.

III-V 광소자 제작을 위한 ITO/n+lnP 옴 접촉 특성연구 (Formation of ITO Ohmic Contact to ITO/n+lnP for III-V Optoelectronic Devices)

  • 황용한;한교용
    • 한국전기전자재료학회논문지
    • /
    • 제15권5호
    • /
    • pp.449-454
    • /
    • 2002
  • The use of a thin film of indium between the ITO and the $n^+-lnP$ contact layers for InP/InGaAs HPTs was studied without degrading its excellent optical transmittance properties. $ITO/n^+-lnP$ ohmic contact was successfully achieved by the deposition of indium and annealing. The specific contact resistance of about $6.6{\times}10^{-4}\Omega\textrm{cm}^2$ was measured by use of the transmission line method (TLM). However, as the thermal annealing was just performed to $ITO/n^+-lnP$ contact without the deposition of indium between ITO and $n^+-lnP$, it exhibited Schottky characteristics. In the applications, the DC characteristics of InP/InGaAs HPTs with ITO emitter contacts was compared with those of InP/InGaAs HBTs with the opaque emitter contacts.

수광층의 카바이드 함량 변화에 따른 실리콘 이종접합 태양전지 특성 변화 (Enhancing Solar Cell Properties of Heterojunction Solar Cell in Amorphous Silicon Carbide)

  • 김현성;김상호;이영석;정준희;김용준;다오빈 아이;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.376-379
    • /
    • 2016
  • In this paper, the efficiency improvement of the heterojunction with intrinsic thin layer (HIT) solar cells is obtained by optimization process of p-type a-SiC:H as emitter. The optoelectronic of p-type a-SiC:H layers including the optical band-gap and conductivity under the methane gas content variation is conducted in detail. A significant increase in the Jsc by $1mA/cm^2$ and Voc by 30 mV are attributed to enhanced photon-absorption due to broader band-gap of p-a-SiC:H and reduced band-offsets at p-side interface, respectively of HIT solar cells.

Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel

  • Wang, Chenchong;Zhang, Chi;Yang, Zhigang;Zhao, Jijun
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.569-575
    • /
    • 2017
  • One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of $25-500^{\circ}C$.

연속 slot-die 코팅법을 이용한 TPD 유기 정공수송층의 코팅 특성 분석 (Coating Properties of a TPD Organic Hole-transporting Layer Deposited using a Continuous slot-die Coating Method)

  • 정국채;김영국;최철진
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.363-368
    • /
    • 2010
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1' biphenyl-4,4'-diamine (TPD) hole-transporting layers were deposited using a continuous slot-die coating method on ITO/PET flexible substrates. It is crucial that the substrates have a very smooth surface with a RMS roughness of less than 2 nm for the deposition of semiconductor nanocrystals or Quantum Dots. The parameters of the slot-die coating, including the solution concentration of the TPD, the gap between the slot-die and the substrates, and the coating speed were controlled in these experiments. To obtain full coverage of the TPD films on the ITO/PET substrates (40 mm wide and several meters long), the injection rates of the TPD solution were increased proportional to the coating speed of the flexible substrates. Additionally, the injection rates must be increased as the gap distance changes from 400 to 600 ${\mu}m$ at the same coating speed. A RMS surface roughness of less than 2 nm was obtained, in contrast to bare ITO/PET substrates, at 13 nm, as the coating speed and gap distance increased.

One-step microwave synthesis of surface functionalized carbon fiber fabric by ZnO nanostructures

  • Ravi S. Rai;Vivek Bajpai
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.557-573
    • /
    • 2023
  • The rapid growth of zinc-oxide (ZnO) nanostructures (NSs) on woven carbon fiber (WCF) is reported in this study employing a microwave-aided chemical bath deposition process. The effects of different process parameters such as molar concentration, microwave duration and microwave power on morphologies and growth rate of the ZnO on WCF were studied. Furthermore, an attempt has been taken to study influence of different type of growth solutions on ZnO morphologies and growth rates. The surface functionalization of WCF fabrics is achieved by successful growth of crystalline ZnO on fiber surface in a very short duration through one-step microwave synthesis. The morphological, structural and compositional studies of ZnO-modified WCF are evaluated using field-emission scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy respectively. Good amount of zinc and oxygen has been seen in the surface of WCF. The presence of the wurtzite phase of ZnO having crystallite size 30-40 nm calculated using the Debye Scherrer method enhances the surface characteristics of WCF fabrics. The UV-VIS spectroscopy is used to investigate optical properties of ZnO-modified WCF samples by absorbance, transmittance and reflectance spectra. The variation of different parameters such as dielectric constants, optical conductivity, refractive index and extinction coefficient are examined that revealed the enhancement of optical characteristics of carbon fiber for wide applications in optoelectronic devices, carbon fiber composites and photonics.

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

CdS 박막제작 및 그 특성(발광 및 수광 소자 응용을 위한에 II-VI족 화합물 반도체들의 접착에 관한 기초연구) (Growth and Properties of CdS Thin films(A Study on the adhesion of II-VI compound semiconductor for applications in light emitting and absorbing devices))

  • Kang, Hyun-Shik;Cho, Ji-Eun;Kim, Kyung-Wha
    • 태양에너지
    • /
    • 제17권2호
    • /
    • pp.55-66
    • /
    • 1997
  • CdTe/CdS 태양전지 제작에 필요한 다결정 CdS 박막을 ITO 전도 유리기판위에 SSD법, SPD법 및 CBD법 으로 제작하고 열처리 한 후 그 결정구조와 광학적 특성을 조사하였다. 박막은 모두 Wurtzite 구조를 보였고 SSD법과 CBD법의 박막은 $0.5{\mu}m$ 크기의 CdS 입자가 불규칙적으로 형성되어 증착되어 있음을 보였고, $400^{\circ}C$로 진공중에서 열처리 할 때 입자의 크기가 약간 증가하였다. SPD법의 박막은 (002)방향으로 결정이 성장되고 입자의 크기가 $0.1-0.3{\mu}m$ 이었다. 에너지 밴드갭 및 결함 상태를 광학적 흡수, 광 루미니센스, 라만 및 광 열 편기 스펙트럼(PDS) 측정을 통해 조사하였다.

  • PDF

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • 이성욱;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF