• Title/Summary/Keyword: Optoelectronic Device

Search Result 128, Processing Time 0.022 seconds

Synthesis of Red Light Emitting Au Nanocluster (적색 발광하는 금 나노클러스터 합성)

  • Cha, Dae Kyeong;Yoon, Sang Min;Kim, Mi Sung;Bang, Ji Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.685-689
    • /
    • 2016
  • Synthesis of the fluorescent Au nanoclusters is reported. The Au nanoclusters were synthesized via reduction of gold ions in reverse micelles with mild reducing agents. The Au nanoclusters show a bright red emission at 640 nm. The fluorescent Au nanoclusters attract great interest for sensor, electronic device and bio-imaging applications because of ultra-small size, high chemical stablity and bright emission. We believe that the fluorescent Au nanoclusters can have optoelectronic applications such as optical down conversion phosphors.

1차원 무기 반도체 신 물질 재료의 연구 개발 동향

  • Ryu, Hak-Gi
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2018
  • In order to overcome the problems of existing low-dimensional materials (carbon nanotubes, graphene, transition metal dichalcogenides, etc) researches on new 1D materials have been studied. In the case of $LiMo_3Se_3$ and $Mo_6S_{9-x}I_x$, continuous researches have been carried out for 3D bulk synthesis and atomic scale dispersion. Recently, quantum confinement effect of $LiMo_3Se_3$ and bio-stability of $Mo_6S_{9-x}I_x$ have been proven and various applications have started to be studied. In addition, device application results using new 1D materials such as $Sb_2Se_3$ (optoelectronic devices using the property of effectively reducing exciton decay due to no dangling bond) and $VS_4$ (electrochemical energy storage using the space between 1-D nanostructures) have been reported very importantly. Therefore, it can be claimed that it has reached a very important time to find and synthesize new 1D materials and to report various characteristics not existing.

Materials properties of wide band-gap semiconductors and their application to high speed electronic power devices (Wide band-gap반도체의 물성 및 고주파용 전력소자의 응용)

  • 신무환
    • Electrical & Electronic Materials
    • /
    • v.9 no.9
    • /
    • pp.969-977
    • /
    • 1996
  • 본고에서는 여러가지 Wide Band-gap중에서 특히 최근에 많은 관심을 끌고 있는 GaN와 4H-SiC, 6H0SiC의 전자기적 물성을 소개하고 현재 이들로부터 제작된 prototype소자들의 성능을 비교함으로써 그 발전현황을 알아보기로 한다. 본고에서 관심을 두는 소자분야는 광전소자(optoelectronic devices)라기보다는 고주파 고출력용 전력소자임을 밝힌다. 아울러 GaN로부터 제작된 MESFET(MEtal Semiconductor Field-Effect Transistor)소자의 고주파 대역에서의 Large-Signal특성을 Device/Circuit Model을 통하여 실험치와 비교하여보고 이로부터 최적화된 channel 구조를 갖는 소자구조에서의 RF특성을 조사한다.

  • PDF

Effect of Annealing Temperature on the Luminescence of Si Nanocrystallites Thin Films Prepared by Pulsed Laser Deposition (펄스 레이저 증착법으로 성장된 실리콘 박막의 어닐링 온도 변화에 따른 발광 특성연구)

  • 김종훈;전경아;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.75-78
    • /
    • 2002
  • Si thin films on p-type (100) Si substrate have been prepared by a pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was 1 Torr. After deposition, Si thin film has been annealed again at 400-840$^{\circ}C$ in nitrogen ambient. Strong blue photoluminescence (PL) have been observed at room temperature. We report the PL properties of Si thin films with the variation of the annealing temperature.

Dry Etching Characteristics of ZnO Thin Films for the Optoelectronic Device by Using Inductively Coupled Plasma

  • Joo, Young-Hee;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.6-9
    • /
    • 2012
  • In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$) of ZnO thin films in $N_2/Cl_2$/Ar inductivity coupled plasma. A maximum etch rate and selectivity of 108.8 nm/min and, 3.21, respectively, was obtained for ZnO thin film at a $N_2/Cl_2$/Ar gas mixing ratio of 15:16:4 sccm. The plasmas were characterized by optical emission spectroscopy. The x-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment. An accumulation of low volatile reaction products on the etched surface was also shown. Based on this data, an ion-assisted chemical reaction is proposed as the main etch mechanism for plasmas containing $Cl_2$.

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong;Yoo, Yongseok;Jeong, Taehee;Ahn, SeJin;Ko, Min Jae
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.657-668
    • /
    • 2018
  • Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

Active Photonic Metadevice Technology (능동 광메타 디바이스 기술 동향)

  • Hwang, C.S.;Hong, S.H.;Hwang, C.Y.;Cho, S.M.;Kim, Y.H.;Suh, D.;Sim, J.S.;Lee, J.I.;Lee, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.81-93
    • /
    • 2018
  • Metamaterials are artificial media that can control the properties of waves at will. Active photonic metadevice technologies cover the device and material technologies that control the visible and IR light through an external signal (mainly an electrical signal). The application areas of active photonic metadevices are tremendous for example holography, active HOE, bio imaging, IR imaging, telecommunication, and optoelectronic devices. In this paper, the technical trends and prospects of active metamaterials, active meta holography, active meta devices, nano-optical telecommunication devices, and IR imaging meta devices are reviewed.

Optical Properties of a Proton-implanted Nd:CNGG Planar Waveguide

  • Zhu, Qian-Lin;Lin, Ming-Fu;Chen, Jing-Yi;Wang, Zhong-Yue;Liu, Chun-Xiao
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.172-176
    • /
    • 2019
  • The work reports on the fabrication of an optical planar waveguide in the Nd:CNGG crystal by the 0.4-MeV hydrogen ion implantation with a fluence of $8.0{\times}10^{16}ions/cm^2$. The nuclear energy loss of the implanted hydrogen ions was derived by using SRIM 2013 code. The microscope image of the proton-implanted Nd:CNGG crystal cross section was captured by a metallographic microscope. The transmittance spectra were recorded before and after the ion implantation. The light intensity distribution of the planar waveguide at 632.8 nm was experimentally measured to validate its effect on one dimension confinement. The investigation shows that the proton-implanted Nd:CNGG waveguide is a candidate for an optoelectronic integrated device.

Noisy OTDR Data Event Detection Analysis for the Real Time Optical Fiber Link Monitoring (실시간 광선로망 감시를 위한 Noisy OTDR 신호 분석 방법)

  • Ko, Dae-Young;Baek, Sung-June;Park, Aaron;Kim, Jin-Bong;Nah, Yong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.122-128
    • /
    • 2016
  • This paper, proposes a new analysis method for the event detection of an OTDR signal. An OTDR signal was passed through the Hamming filter to remove the high frequency noise included in the signal. The signal was then passed consecutively through a differential filter to detect the events of interest. The terminal position was determined using the fact that there is a large gap between the signal and the trailing noise power beyond the terminal. This study examined the local maxima of the signal up to the terminal position and determined the peak regions. The real events were determined from the peak regions using noise information and peak threshold. Finally, the user events were found by inspecting the user peaks beyond the terminal position. The events of the OTDR signal without users are located at less than 17m compared to the optical fiber link setup. The events of the JDSU device are located less than 25m and their users are less than 5m. For the RadianTech device, the events are detected at less than 19m and the users are found in 5m. The results suggest that the proposed method is sufficiently applicable to an optical fiber link monitoring system.

Bandgap Engineering in CZTSSe Thin Films via Controlling S/(S+Se) Ratio

  • Vijay C. Karade;Jun Sung Jang;Kuldeep Singh, Gour;Yeonwoo Park;Hyeonwook, Park;Jin Hyeok Kim;Jae Ho Yun
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • The earth-abundant element-based Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells (TFSCs) have attracted greater attention in the photovoltaic (PV) community due to their rapid development in device power conversion efficiency (PCE) >13%. In the present work, we demonstrated the fine-tuning of the bandgap in the CZTSSe TFSCs by altering the sulfur (S) to the selenium (Se) chalcogenide ratio. To achieve this, the CZTSSe absorber layers are fabricated with different S/(S+Se) ratios from 0.02 to 0.08 of their weight percentage. Further compositional, morphological, and optoelectronic properties are studied using various characterization techniques. It is observed that the change in the S/(S+Se) ratios has minimal impact on the overall Cu/(Zn+Sn) composition ratio. In contrast, the S and Se content within the CZTSSe absorber layer gets altered with a change in the S/(S+Se) ratio. It also influences the overall absorber quality and gets worse at higher S/(S+Se). Furthermore, the device performance evaluated for similar CZTSSe TFSCs showed a linear increase and decrease in the open circuit voltage (Voc) and short circuit current density (Jsc) of the device with an increasing S/(S+Se) ratio. The external quantum efficiency (EQE) measured also exhibited a linear blue shift in absorption edge, increasing the bandgap from 1.056 eV to 1.228 eV, respectively.