• Title/Summary/Keyword: Option Models

Search Result 155, Processing Time 0.02 seconds

Performances of Simple Option Models When Volatility Changes

  • Jung, Do-Sub
    • Journal of Digital Convergence
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 2009
  • In this study, the pricing performances of alternative simple option models are examined by creating a simulated market environment in which asset prices evolve according to a stochastic volatility process. To do this, option prices fully consistent with Heston[9]'s model are generated. Assuming this prices as market prices, the trading positions utilizing the Black-Scholes[4] model, a semi-parametric Corrado-Su[7] model and an ad-hoc modified Black-Scholes model are evaluated with respect to the true option prices obtained from Heston's stochastic volatility model. The simulation results suggest that both the Corrado-Su model and the modified Black-Scholes model perform well in this simulated world substantially reducing the biases of the Black-Scholes model arising from stochastic volatility. Surprisingly, however, the improvements of the modified Black-Scholes model over the Black-Scholes model are much higher than those of the Corrado-Su model.

  • PDF

COMPARISON OF STOCHASTIC VOLATILITY MODELS: EMPIRICAL STUDY ON KOSPI 200 INDEX OPTIONS

  • Moon, Kyoung-Sook;Seon, Jung-Yon;Wee, In-Suk;Yoon, Choong-Seok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.209-227
    • /
    • 2009
  • We examine a unified approach of calculating the closed form solutions of option price under stochastic volatility models using stochastic calculus and the Fourier inversion formula. In particular, we review and derive the option pricing formulas under Heston and correlated Stein-Stein models using a systematic and comprehensive approach which were derived individually earlier. We compare the empirical performances of the two stochastic volatility models and the Black-Scholes model in pricing KOSPI 200 index options.

A numerical study on option pricing based on GARCH models with normal mixture errors (정규혼합모형의 오차를 갖는 GARCH 모형을 이용한 옵션가격결정에 대한 실증연구)

  • Jeong, Seung Hwan;Lee, Tae Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.251-260
    • /
    • 2017
  • The option pricing of Black와 Scholes (1973) and Merton (1973) has been widely reported to fail to reflect the time varying volatility of financial time series in many real applications. For example, Duan (1995) proposed GARCH option pricing method through Monte Carlo simulation. However, financial time series is known to follow a fat-tailed and leptokurtic probability distribution, which is not explained by Duan (1995). In this paper, in order to overcome such defects, we proposed the option pricing method based on GARCH models with normal mixture errors. According to the analysis of KOSPI200 option price data, the option pricing based on GARCH models with normal mixture errors outperformed the option pricing based on GARCH models with normal errors in the unstable period with high volatility.

Economic Evaluation of National Highway Construction Projects using Real Option Pricing Models (실물옵션 가치평가모형을 이용한 국도건설사업의 경제적 가치 평가)

  • Jeong, Seong-Yun;Kim, Ji-Pyo
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • PURPOSES : This study evaluates the economic value of national highway construction projects using Real Option Pricing Models. METHODS : We identified the option premium for uncertainties associated with flexibilities according to the future's change in national highway construction projects. In order to evaluate value of future's underlying asset, we calculated the volatility of the unit price per year for benefit estimation such as VOTS, VOCS, VICS, VOPCS and VONCS that the "Transportation Facility Investment Evaluation Guidelines" presented. RESULTS : We evaluated the option premium of underlying asset through a case study of the actual national highway construction projects using ROPM. And in order to predict the changes in the option value of the future's underlying asset, we evaluated the changes of option premium for future's uncertainties by the defer of the start of construction work, the contract of project scale, and the abandon of project during pre-land compensation stages that were occurred frequently in the highway construction projects. Finally we analyzed the sensitivity of the underlying asset using volatility, risk free rate and expiration date of option. CONCLUSIONS : We concluded that a highway construction project has economic value even though static NPV had a negative(-) value because of the sum of the existing static NPV and the option premium for the future's uncertainties associated with flexibilities.

Option pricing and profitability: A comprehensive examination of machine learning, Black-Scholes, and Monte Carlo method

  • Sojin Kim;Jimin Kim;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.585-599
    • /
    • 2024
  • Options pricing remains a critical aspect of finance, dominated by traditional models such as Black-Scholes and binomial tree. However, as market dynamics become more complex, numerical methods such as Monte Carlo simulation are accommodating uncertainty and offering promising alternatives. In this paper, we examine how effective different options pricing methods, from traditional models to machine learning algorithms, are at predicting KOSPI200 option prices and maximizing investment returns. Using a dataset of 2023, we compare the performance of models over different time frames and highlight the strengths and limitations of each model. In particular, we find that machine learning models are not as good at predicting prices as traditional models but are adept at identifying undervalued options and producing significant returns. Our findings challenge existing assumptions about the relationship between forecast accuracy and investment profitability and highlight the potential of advanced methods in exploring dynamic financial environments.

Calibrated Parameters with Consistency for Option Pricing in the Two-state Regime Switching Black-Scholes Model (국면전환 블랙-숄즈 모형에서 정합성을 가진 모수의 추정)

  • Han, Gyu-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Among a variety of asset dynamics models in order to explain the common properties of financial underlying assets, parametric models are meaningful when their parameters are set reliably. There are two main methods from which we can obtain them. They are to use time-series data of an underlying price or the market option prices of the underlying at one time. Based on the Girsanov theorem, in the pure diffusion models, the parameters calibrated from the option prices should be partially equivalent to those from time-series underling prices. We call this phenomenon model consistency. In this paper, we verify that the two-state regime switching Black-Scholes model is superior in the sense of model consistency, comparing with two popular conventional models, the Black-Scholes model and Heston model.

The Stochastic Volatility Option Pricing Model: Evidence from a Highly Volatile Market

  • WATTANATORN, Woraphon;SOMBULTAWEE, Kedwadee
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.685-695
    • /
    • 2021
  • This study explores the impact of stochastic volatility in option pricing. To be more specific, we compare the option pricing performance between stochastic volatility option pricing model, namely, Heston option pricing model and standard Black-Scholes option pricing. Our finding, based on the market price of SET50 index option between May 2011 and September 2020, demonstrates stochastic volatility of underlying asset return for all level of moneyness. We find that both deep in the money and deep out of the money option exhibit higher volatility comparing with out of the money, at the money, and in the money option. Hence, our finding confirms the existence of volatility smile in Thai option markets. Further, based on calibration technique, the Heston option pricing model generates smaller pricing error for all level of moneyness and time to expiration than standard Black-Scholes option pricing model, though both Heston and Black-Scholes generate large pricing error for deep-in-the-money option and option that is far from expiration. Moreover, Heston option pricing model demonstrates a better pricing accuracy for call option than put option for all level and time to expiration. In sum, our finding supports the outperformance of the Heston option pricing model over standard Black-Scholes option pricing model.

HEDGING OPTION PORTFOLIOS WITH TRANSACTION COSTS AND BANDWIDTH

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Black-Scholes equation arising from option pricing in the presence of cost in trading the underlying asset is derived. The transaction cost is chosen precisely and generalized to reflect the trade in the real world. Furthermore the concept of the bandwidth is introduced to obtain the better rehedging. The model with bandwidth derived in this paper can be used to calculate the more accurate option price numerically even if it is nonlinear and more complicated than the models shown before.

  • PDF

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.