• Title/Summary/Keyword: Optimum structural design

Search Result 836, Processing Time 0.026 seconds

Multi-Objective Optimization for Orthotrpic Steel Deck Bridges (강상판교의 다목적 최적설계)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This study proposed a muti-objective optimum design method for rational optimizing of orthotropic steel deck bridges. This multi-objective optimum design method was found to be effective in optimizing multi-objective problems, considering cost and deflection functions. It may ve difficult to optimize orthotropic steel deck bridges using a conventional optimization, since the bridges have several parts and show complex structural behaviors. Therefore, the Pareto curve can be obtained by performing the multi-objective optimization for real orthotropic steel deck bridges, using the multi-level technique with excellent efficiency. A reasonable and economical design can be attained using the Parato curve in the cost and deflection functions of the bridge. Thus, more reasonable design values can be determined based on a comparison with those using a conventional design procedure.

Form Definition of Free Form Structure (자유형상 구조물의 형상정의)

  • 박재섭;우일국;김수영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.43-47
    • /
    • 1991
  • For the structural analysis of optimum form decision of 3-D free fort structure such as ship, plane, automobile, definition of versatile forms and comparision between them satisfying the design criterion, is essential. In this paper, three dimensional free-form structure and it's variation are defined and attempts were made to obtain geometric form information for structural analysis. The validity of the method ks been tested for a particular free-form model selected.

  • PDF

Estimation of Depth Effect on the Bending Strength of Domestic Japanese Larch Structural Lumber using Weibull Weakest Link Theory

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.112-118
    • /
    • 2014
  • The depth effect on bending strength of Japanese larch structural lumber was investigated by using the published data of two different depth lumbers with the same length. Depth effect parameters were derived from Weibull's weakest link theory and compared to the results from other researches. Depth effect on bending strength was significant for No.1 and No.3 lumber, but not insignificant for No.2 lumber. Calculated value of the depth effect adjustment factors was 0.21, 0.11 and 0.22 by lumber grade, respectively. These results were similar to those results from previous researches and supported depth effect on bending strength of lumber. An apparent depth adjustment factor has been proposed to 0.2 in the literatures. Based on this study, depth adjustment factor was considered to 0.2 as a conservative optimum design value that should be incorporated in domestic building code (KBC) for structural lumber.

Structural Optimization of a Manifold Valve for Pressure Vessel (압력용기 매니폴드 밸브의 구조최적설계)

  • Bae, Tae-Sung;Kim, Si-Pom;Lee, Kwon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.102-109
    • /
    • 2009
  • This study proposes the structural optimization of a manifold valve. FE analysis is performed to evaluate the strength of a manifold valve. In addition, the structural optimization technique is applied to reduce its weight. In this study, the optimization method using the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. The maximum stress and the weight are replaced by the metamodels. In this process, tile sample points are generated by latin-hypercube design. Optimum designs are obtained by ANSYS Workbench and the in-house program.

Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties (동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF

A Study on the Techniques of Configuration Optimization (형상 최적설계를 위한 최적화 기법에 관한 연구)

  • Choi, Byoung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.819-832
    • /
    • 2004
  • This study describes an efficient and facile method for configuration optimum design of structures. One of the ways to achieve numerical shape representation and the selection of design variables is using the design element concept. Using this technique, the number of design variables could be drastically reduced. Isoparametric mapping was utilized to automatically generate the finite element mesh during the optimization process, and this made it possible to easily calculate the derivatives of the coordinates of generated finite element nodes w.r.t. the design variables. For the structural analysis, finite element analysis was adopted in the optimization procedure, and two different techniques(the deterministic method, a modified method of feasible direction; and the stochastic method, a genetic algorithms) were applied to obtain the minimum volumes and section areas for an efficient configuration optimization procedure. Futhermore, spline interpolation was introduced to present a realistic optimum configuration that meet the manufacturing requirements. According to the results of several numerical examples(steel structures), the two techniques suggested in this study simplified the process of configuration optimum design of structures, and yielded improved objective function values with a robust convergence rate. This study's applicability and capability have therefore been demonstrated.

Applications of bridge information modeling in bridges life cycle

  • Marzouk, Mohamed M.;Hisham, Mohamed;Al-Gahtani, Khalid
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.407-418
    • /
    • 2014
  • The purpose of this paper is to present an Integrated Life Cycle Bridge Information Modeling that can be used throughout different phases of the bridge life cycle including: design, construction, and operation and maintenance phases. Bridge Information Modeling (BrIM) has become an effective tool in bridge engineering and construction. It has been used in obtaining accurate shop drawings, cost estimation, and visualization. In this paper, BrIM is used as an integrated tool for bridges life cycle information modeling. In the design phase, BrIM model can be used in obtaining optimum construction methods and performing structural advanced analysis. During construction phase, the model selects the appropriate locations for mobile cranes, monitors the status of precast components, and controls documents. Whereas, it acts as a tool for bridge management system in operation and maintenance phase. The paper provides a detailed description for each use of BrIM model in design, construction, and operation and maintenance phases of bridges. It is proven that BrIM is an effective tool for bridge management systems throughout their life phases.

The effect of mass eccentricity on the torsional response of building structures

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.671-682
    • /
    • 2018
  • The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.

Structural Analysis of Ship Structures by Generalized Slope Deflection Method (일반화 경사처짐법에 의한 선체의 횡강도 해석)

  • Jang, Chang-Doo;Na, Seung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.65-74
    • /
    • 1996
  • For the structural analysis of ship structures finite element method is generally used but it requires lots of working and computing time from the design viewpoint. Therefore, it is desirable to adopt a new analysis method which gives little computing time and high accuracy instead of finite element method to carry out various alternative design and optimum design. In this study, from the analysis viewpoint, structural analysis of oil tankers is carried out to verify the effectiveness of the generalized slope deflection method and the new equivalent curved beam theory which were formulated by the authors and their superiority is verified by comparison of the computing time and the results of accuracy with existing methods.

  • PDF

Lightweight Automobile Design with ULSAB Concept Using Structural Optimization (구조 최적설계 기법을 이용한 초경량차체 개념의 경량 자동차 설계)

  • 신정규;송세일;이권희;박경진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.277-286
    • /
    • 2001
  • Among the ULSAB methods for the lightweight automobile body, Tailor Welded Blank(TWB) is adopted and the design process is developed for the existing component. Topology optimization conducted to find the distribution of the variable thickness. The number of parts and the welding lines are determined from it. In the detail design, size optimization is carried out to find the optimum thickness of each part and then, the final parting lines are tuned by shape optimization. A commercial optimization software GENESIS is utilized for the optimization processes.

  • PDF