• Title/Summary/Keyword: Optimum solutions

Search Result 595, Processing Time 0.036 seconds

ON DUALITY THEOREMS FOR MULTIOBJECTIVE PROGRAMS

  • Kim, Do-Sang;Lee, Gue-Myung
    • East Asian mathematical journal
    • /
    • v.5 no.2
    • /
    • pp.209-213
    • /
    • 1989
  • The efficiency(Pareto optimum) is a type of solutions for multiobjective programs. We formulate duality relations for multiobjective nonlinear programs by using the concept of efficiency. The results are the weak and strong duality relations for a vector dual of the Wolfe type involving invex functions.

  • PDF

Solving design optimization problems via hunting search algorithm with Levy flights

  • Dogan, Erkan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.351-368
    • /
    • 2014
  • This study presents a hunting search based optimum design algorithm for engineering optimization problems. Hunting search algorithm is an optimum design method inspired by group hunting of animals such as wolves, lions, and dolphins. Each of these hunters employs hunting in a different way. However, they are common in that all of them search for a prey in a group. Hunters encircle the prey and the ring of siege is tightened gradually until it is caught. Hunting search algorithm is employed for the automation of optimum design process, during which the design variables are selected for the minimum objective function value controlled by the design restrictions. Three different examples, namely welded beam, cellular beam and moment resisting steel frame are selected as numerical design problems and solved for the optimum solution. Each example differs in the following ways: Unlike welded beam design problem having continuous design variables, steel frame and cellular beam design problems include discrete design variables. Moreover, while the cellular beam is designed under the provisions of BS 5960, LRFD-AISC (Load and Resistant Factor Design-American Institute of Steel Construction) is considered for the formulation of moment resisting steel frame. Levy Flights is adapted to the simple hunting search algorithm for better search. For comparison, same design examples are also solved by using some other well-known search methods in the literature. Results reveal that hunting search shows good performance in finding optimum solutions for each design problem.

Discrete Optimization for Vibration Design of Composite Plates by Using Lamination Parameters

  • Honda, Shinya;Narita, Yoshihiro;Sasaki, Katsuhiko
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.297-314
    • /
    • 2009
  • A design method is proposed to optimize the stacking sequence of laminated composite plates for desired vibration characteristics. The objective functions are the natural frequencies of the laminated plates, and three types of optimization problems are studied where the fundamental frequency and the difference of two adjacent frequencies are maximized, and the difference between the target and actual frequencies is minimized. The design variables are a set of discrete values of fiber orientation angles with prescribed increment in the layers of the plates. The four lamination parameters are used to describe the bending property of a symmetrically laminated plate, and are optimized by a gradient method in the first stage. A new technique is introduced in the second stage to convert from the optimum four lamination parameters into the stacking sequence that is composed of the optimum fiber orientation angles of all the layers. Plates are divided into sub-domains composed of the small number of layers and designed sequentially from outer domains. For each domain, the optimum angles are determined by minimizing the errors between the optimum lamination parameters obtained in the first step and the parameters for all possible discrete stacking sequence designs. It is shown in numerical examples that this design method can provide with accurate optimum solutions for the stacking sequence of vibrating composite plates with various boundary conditions.

Extraction of β-glucosidase from Bagasse Fermented by Mixed Culture under Solid State Fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • Various parameters such as solvent selection, concentration, solid/liquid ratio, soaking time, temperature, stationary, shaking conditions, and repeated extractions were investigated in order to determine the optimum extraction conditions of ${\beta}$-glucosidase from bagasse fermented by mixed culture of Aspergillus niger NRC 7A and Aspergillus oryzae NRRL 447. Among various solvents tested, non ionic detergents gave the best results than the inorganic or organic salt solutions and distilled water. The optimum conditions for extraction of ${\beta}$-glucosidase were 30 min soaking time at $40^{\circ}C$ under shaking condition at 150 rpm, with solid/liquid ratio 1:15 (w/v), which yielded $2882.74{\pm}95.52U/g$ fermented culture (g fc) of enzyme activity. With repeated washes under the above optimum conditions, the results showed that enzyme extracted in the $1^{st}$ and $2^{nd}$ washes represents about 90% of the total activity.

Optimum Design Criteria based on Capacity of Synchronous Reluctance Motor Using a Coupled FEM & SUMT (유한요소법을 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조설계와 SUMT를 이용한 최적설계)

  • Kwon, Sun-Bum;Kim, Gi-Bok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.126-128
    • /
    • 2004
  • This paper deals with an automatic optimum design based on capacity for a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to the output power on the basis of rotor shape of a SynRM in each capacity. And optimization algorithm is used by means of sequential unconstrained minimization technique(SUMT). The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor geometric dimensions according to capacity starting from an existing motor or a preliminary design.

  • PDF

Characteristics Analysis & Optimum Design of Anisotropy Rotor Synchronous Reluctance Motor Using Coupled Finite Element Method & Response Surface Methodology (유한 요소법과 반응표면법이 결합된 동기형 릴럭턴스 전동기의 특성해석 및 이방성 회전자 설계)

  • Lee, Il-Kyo;Cho, Young-Hyun;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.754_755
    • /
    • 2009
  • This paper deals with the characteristics analysis & optimum design of Synchronous Reluctance Motor (SynRM) with anisotropy rotor using a coupled Finite Element Method (FEM) & Response Surface Methodology (RSM). The focus of this paper is the characteristics analysis & optimum design relative to the output power on the basis of rotor materials of a SynRM. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. Comparisons are given with characteristics of normal synchronous reluctance motor and those of anisotropy rotor SynRM (ANISO-SynRM), respectively. The feasibility of using RSM with FEM in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of rotor in anisotropy rotor SynRM.

  • PDF

Optimum design of a walking tractor handlebar through many-objective optimisation

  • Mahachai, Apichit;Bureerat, Sujin;Pholdee, Nantiwat
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.273-281
    • /
    • 2017
  • In this work, a comparative study of multi-objective meta-heuristics (MOMHs) for optimum design of a walking tractor handlebar is conducted in order to reduce the structural mass and increase structural static and dynamic stiffness. The design problem has objective functions as maximising structural natural frequencies, minimising structural mass, bending deflection and torsional deflection with stress constraints. The problem is classified as a many-objective optimisation since there are more than three objectives. Design variables are structural shape and size. Several well established multi-objective optimisers are employed to solve the proposed many-objective optimisation problems of the walking tractor handlebar. The results are compared whereas optimum design solutions of the walking tractor handlebar are illustrated.

An Optimization of Air-Lubricated Slider Bearings Using the Reduced Basis Concept (축소기초모델개념을 이용한 공기윤활 슬라이더 베어링의 최적설계)

  • Yoon, Sang-Joon;Kim, Dong-In;Kang, Tae-Sik;Jeong, Tae-Gun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.343-348
    • /
    • 2003
  • In this study, optimum designs of the air-bearing surface (ABS) are achieved using the reduced basis concept which can effectively reduce the number of design variables without cutting down on the design space. Even though the optimization method is easier and more applicable to handle than the trial-and-error method, its efficiency is largely dependent on the number of the design variables. Hence, the reduced basis concept is applied, by which the desired design can be defined as a linear combination of basis designs. The simulation results show the effectiveness of the proposed approach by obtaining the optimum solutions of the sliders whose target flying heights are 25, 20, and 15nm.

Investigation on optimum protection potential of Al-Mg alloy for small ship application in sea water solution (소형선박용 Al-Mg 합금의 해양환경 중 최적 방식 전위결정에 관한 연구)

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il;Ko, Jae-Yong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.23-24
    • /
    • 2005
  • This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a passive film. In a potentiostatic experiment, the current density after 1200 sec in the potential range of $-0.68{\sim}-1.5 V$ was low. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.5 to -0.7 V(SSCE).

  • PDF

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF