• Title/Summary/Keyword: Optimum solutions

Search Result 594, Processing Time 0.022 seconds

MANAGEMENT DECISION-MAKING FOR SUGARCANE FERTILIZER MIX PROBLEMS THROUGH GOAL PROGRAMMING

  • Sharma, Dinesh K.;Ghosh, Debasis;Alade, Julius A.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.323-334
    • /
    • 2003
  • This paper presents a goal-programming (GP) model for management decision-making for sugarcane fertilizer mix problems. Sensitivity analysis on the priority structure of the goals has been performed to obtain all possible solutions. The study uses Euclidean distance function to measure distances of all possible solutions from the ideal solution. The optimum solution is determined from the minimum distance between the ideal solution and other possible solutions of the problem. The optimum solution corresponds to the appropriate priority structure of the problem in the decision-making context. furthermore, the results obtained from sensitivity analysis on the cost of combination of fertilizers confirm the priority structure.

Integrated Genetic Algorithm with Direct Search for Optimum Design of RC Frames (직접탐색을 이용한 유전자 알고리즘에 의한 RC 프레임의 최적설계)

  • Kwak, Hyo-Gyoung;Kim, Ji-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.21-34
    • /
    • 2008
  • An improved optimum design method for reinforced concrete frames using integrated genetic algorithm(GA) with direct search method is presented. First, various sets of initially assumed sections are generated using GA, and then, for each resultant design member force condition optimum solutions are selected by regression analysis and direct search within pre-determined design section database. In advance, global optimum solutions are selected from accumulated results through several generations. Proposed algorithm makes up for the weak point in standard genetic algorithm(GA), that is, low efficiency in convergence causing the deterioration of quality of final solutions and shows fast convergence together with improved results. Moreover, for the purpose of elevating economic efficiency, optimum design based on the nonlinear structural analysis is performed and therefore makes all members resist against given loading condition with the nearest resisting capacity. The investigation for the effectiveness of the introduced design procedure is conducted through correlation study for example structures.

Optimum Design for Rotor-bearing System Using Advanced Genetic Algorithm (향상된 유전알고리듬을 이용한 로터 베어링 시스템의 최적설계)

  • Kim, Young-Chan;Choi, Seong-Pil;Yang, Bo-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.533-538
    • /
    • 2001
  • This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a genetic algorithm and a local concentrate search algorithm (e. g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables.

  • PDF

A Comprehensive Study on Patient Flow Improvement Solutions and Their Implementation Strategies in an Outpatient System (대형 병원 외래 시스템의 환자 흐름 개선방안의 적용 전략에 관한 연구)

  • Lee, Young-Woo;Lee, Tae-Sik
    • IE interfaces
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • There are various ways to manage the patient flow of the hospital outpatient system. However, it is difficult to apply many implementation solutions to the real outpatient system at once. Because first, the expected effects of each different solution are very much depend on the real situation of the system and applied other solutions, and second, owing to the limited resources, each solution should be implemented according to the priority. In order to overcome these difficulties, this paper focuses on proposing the comprehensive subset of implementation solutions, which is one of the most effective among various kinds of subsets, and verifying the effects of it. The comprehensive subset of solutions is derived from conducting design of experiments and simulation which determine the optimum set of different solutions and analyze the particular interactions and priority order among them. This implementation strategy can solve the difficulties of applying different kinds of various solutions to the hospital outpatient system.

A Tabu Search Algorithm for the Postal Transportation Planning Problem (우편집중국간 우편물 운송계획 문제의 타부 탐색 알고리듬)

  • 최지영;송영효;강성열
    • Journal of Information Technology Applications and Management
    • /
    • v.9 no.4
    • /
    • pp.13-34
    • /
    • 2002
  • This paper considers a postal transportation planning problem in the transportation network of the form of hub and spoke Given mail sorting centers and an exchange center, available vehicles and amount of mails to be transported between mail sorting centers, postal transportation planning is to make a transportation plan without violating various restrictions. The objective is to minimize the total transportation cost. To solve the problem, a tabu search algorithm is proposed. The algorithm is composed of a route construction procedure and a route improvement procedure to improve a solution obtained by the route construction procedure using a tabu search. The tabu search uses the best-admissible strategy, BA, and the first-best-admissible strategy, FBA. The algorithm was tested on problems consisting of 11, 16 and 21 mail sorting centers including one exchange center. Solutions of the problems consisting of 11 mail sorting centers including one exchange center were compared with optimal solutions On average, solutions using BA strategy were within 0.287% of the optimum and solutions using FBA strategy were within 0.508% of the optimum. Computational results show that the proposed algorithm can solve practically sized problems within a reasonable time and the quality of the solution is very good.

  • PDF

Synthetic Conditions and Rheological Characteristics of Barium Sulfate (황산바륨의 합성조건과 유동학적 특성)

  • Shin, Wha-Woo;Kim, Jun-Hea;Choi, Kwang-Sik;Chang, Young-Soo;Lee, Kwang-Pyo
    • YAKHAK HOEJI
    • /
    • v.36 no.6
    • /
    • pp.538-547
    • /
    • 1992
  • Optimal synthetic condition of barium sulfate were investigated from the viewpoint of yield and bulkiness according to a randomized complete block design proposed by G.E.P. Box and K.B. Wilson. Barium chloride and magnesium sulfate were utilized as reactants in order to prepare barium sulfate in this study. It was found that optimum temperature range of reactant solutions was $60{\sim}100^{\circ}C$ and the optimum concentration range of the reactant solutions was $10{\sim}17.3%$ and $10{\sim}20%$ respectively, on the viewpoint of yield and bulkiness. The optimum mole ratio of $BaCI_2$ to $BaSO_4$ was in the range of $1.50{\sim}2.0$ and the optimum mole ratio of $BaCI_2$ to $BaSO_4$ was in the range of $1.50{\sim}2.0$ and the optimum reacting time range was $15{\sim}20$ minutes. The optimum drying temperature range was $110{\sim}130^{\circ}C$ from the viewpoint of yield, but it was $90{\sim}110^{\circ}C$ on the basis of bulkiness. Apparent viscosity of barium sulfate suspensions dispersed in various concentrations of Na. CMC was measured by using Brookfield synchrolectric viscometer model LVT, the relative equation, log ${\eta}_{sp}=A+B.{\phi}$ was examined and the equation was found to agree fairly well. 1 w/v% Na. CMC aqueous solution and 0.1 volume fraction of $BaSO_4$ powder were optimum in the preparation of $BaSO_4$ suspension showing highest viscosity at infinite shearing.

  • PDF

Optimum design of steel space truss towers under seismic effect using Jaya algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This study investigates optimum designs of steel space truss towers under seismic loading by using Jaya optimization algorithm. Turkish Earthquake Code (2007) specifications are applied on optimum designs of steel space truss towers under the seismic loading for different local site classes depending on different soil groups. The proposed novel algorithm does not have any algorithm-specific control parameters and depends only a simple revision equation. Therefore, it provides a practical solution for structural optimization problems. Optimum solutions of the different steel truss examples are carried out by selecting suitable W sections taken from American Institute of Steel Construction (AISC). In order to obtain optimum solutions, a computer program is coded in MATLAB in corporated with SAP2000-OAPI (Open Application Programming Interface). The stress and displacement constraints are applied on the design problems according to AISC-ASD (Allowable Stress Design) specifications. Firstly, a benchmark truss problem is examined to see the efficiency of Jaya optimization algorithm. Then, two different multi-element truss towers previously solved with other methods without seismic loading in literature are designed by the proposed algorithm. The first space tower is a 582-member space truss with the height of 80 m and the second space tower is a 942-member space truss of about 95 m height. The minimum optimum designs obtained with this novel algorithm for the case without seismic loading are lighter than the ones previously attained in the literature studies. The results obtained in the study show that Jaya algorithm is a practical and robust optimization method for structural optimization problems. Moreover, incorporation of the seismic loading causes significant increase in the minimum design weight.

Simulated Annealing Algorithm for Optimum Design of Space Truss Structures (입체 트러스구조물의 최적설계를 위한 SA기법)

  • 정제원;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.102-109
    • /
    • 1999
  • Two phase simulated annealing algorithm is presented as a structural optimization technique and applied to minimum weight design of space trusses subjected to stress and displacement constraints under multiple loading conditions. Univariate searching algorithm is adopted for automatic selection of initial values of design variables for SA algorithm. The proper values of cooling factors and reasonable stopping criteria for optimum design of space truss structures are proposed to enhance the performance of optimization process. Optimum weights and design solutions are presented for two well-blown example structures and compared with those reported in the literature.

  • PDF

Optimum design of braced steel frames via teaching learning based optimization

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.733-744
    • /
    • 2016
  • In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching-learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISC-ASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.

Optimum design of steel bridges including corrosion effect using TLBO

  • Artar, Musa;Catar, Recep;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.607-615
    • /
    • 2017
  • This study presents optimum design of plane steel bridges considering corrosion effect by using teaching-learning based optimization (TLBO) method. Optimum solutions of three different bridge problems are linearly carried out including and excluding corrosion effect. The member cross sections are selected from a pre-specified list of 128 W profiles taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB to carry out optimum design interacting with SAP2000 using OAPI (Open Application Programming Interface). The stress constraints are incorporated as indicated in AISC Allowable Stress Design (ASD) specifications and also displacement constraints are applied in optimum design. The results obtained from analysis show that the corrosion effect on steel profile surfaces causes a crucial increase on the minimum steel weight of bridges. Moreover, the results show that the method proposed is applicable and robust to reach the destination even for complex problems.