• Title/Summary/Keyword: Optimum light intensity

Search Result 172, Processing Time 0.023 seconds

광합성 홍색세균에 의한 5-Aminolevulinic acid생산에서의 조도의 영향

  • Min, Na-Yeong;Yun, Jong-Seon;Wi, Yeong-Jung;Kim, Jin-Nam;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.295-296
    • /
    • 2000
  • Effect of light intensity on ALA production was, investigated. The culture condition and medium optimization were also examined for the biosynthesis of ALA using Rhodobacter sphaeroides, non-sulfur bacteria, and investigated for enhancement of the production of ALA. In the dark condition, extracellular ALA formation and cell growth were not observed. Optimum light intensity for cell growth and ALA production were 4 kLux and 5 kLux, respectively.

  • PDF

Enhancement of Carbon Dioxide Fixation by Alteration of Illumination during Chlorella Vulgaris-Buitenzorg's Growth

  • Wijanarko Anondho;Dianursanti Dianursanti;Gozan Misri;Andika Sang Made Krisna;Widiastuti Paramita;Hermansyah Heri;Witarto Arief Budi;Asami Kazuhiro;Soemantojo Roekmijati Widaningroem;Ohtaguchi Kazuhisa;Koo Song-Seung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.484-488
    • /
    • 2006
  • Alteration of illumination with optimum carbon dioxide fixation-based curve in this research successfully enhanced the $CO_{2}-fixation\;(q_CO_{2}$ capability of Chlorella vulgaris Buitenzorg cultivated in a bubble column photo bioreactor. The level of $CO_{2}$ fixation was up to 1.91 times that observed from cultivation with intensification of illumination on an optimum growth-based curve. During 144 h of cultivation, alteration of light intensity on an optimum $CO_{2}-fixation-based$ curve produced a $q_CO_{2}$ of $12.8\;h^{-1}$. Meanwhile, alteration of light intensity with a growth-based curve only produced a $q_CO_{2}$ of $6.68\;h^{-1}$. Increases in light intensity based on a curve of optimum $CO_{2}-fixation$ produced a final cell concentration of about 5.78 g/L. Both cultivation methods were carried out under ambient pressure at a temperature of $29^{\circ}C$ with a superficial gas velocity of $2.4\;m/h(U_{G}$. Cells were grown on Beneck medium in a 1.0 L Bubble Column Photo bioreactor illuminated by a Phillips Halogen Lamp (20 W/12 V/50 Hz). The inlet gas had a carbon dioxide content of 10%.

Cultivation of Tetraselmis suecica under Different Types of Light Emitting Diodes (LED 조명을 이용한 광생물 반응기에서의 Tetraselmis suecica 배양 연구)

  • Lee, Jae-Keun;Lim, Jun-Hyuk;Lee, Tae-Yoon
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.757-761
    • /
    • 2012
  • The purpose of this study was to determine optimum conditions for the cultivation of Tetraselmis suecica (T. suecica) under illumination of four different types of LEDs (i.e., blue, red, white, and mixed). Initial cell concentration was $4{\times}10^4$ cells/mL and temperature of reactor was maintained between 21-$24^{\circ}C$. Specific growth rates were 0.72 $day^{-1}$(white), 0.58 $day^{-1}$(red), 0.49 $day^{-1}$(mixed), and 0.49 $day^{-1}$(blue). Thus, white LEDs was used for the cultivation of T. suecica. Tests with white LEDs under different light intensity, which was conducted to determine optimum light intensity of white LEDs, showed that 9,000 lux of illumination resulted in fastest cell growth and greatest cell concentrations. To avoid shadow effects by dense cell populations, aeration was performed. Cell concentration increased 3.8 times when aeration was used.

Comparative Photosynthetic Physiology of Fronds and Cultivated Filaments of Porphyra pseudolinearis Ueda (한국산 긴잎돌김 (Porphyra pseudolinearis Ueda)의 엽상체와 배양 사상체의 광합성 비교)

  • KIM Hyung-Geun;CHU Su-Dong;JUN Bang-Ook
    • Journal of Aquaculture
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1994
  • The effects of temperature and light intensity on the photosynthesis were investigated in fronds and cultivated filaments of Porphyra pseudolinearis Ueda. The optimum temperatures for total photosynthesis of fronds and filaments were $25\~30^{\circ}C\;and\;20^{\circ}C$, respectively. The photosynthetic rates of fronds and filaments based on light intensity were shown in a typical light saturation curve where the rates were constant over the light intensity of approximately 10,000 lux. The compensation points were 2,100 lux in fronds and 900 lux in filaments. The photosynthetic rate of filaments was 5 to 10 times greater than that of fronds. This would be very advantageous for filaments to conduct photosynthesis in the condition of dim light.

  • PDF

A CLINICAL STUDY ON THE MAINTENANCE OF LIGHT INTENSITY OF VISIBLE-LIGHT CURING MACHINES FOR THE POLYMERIZATION OF COMPOSITE RESINS (복합레진 중합용 가시광선 광중합기의 적정 광강도 유지를 위한 임상적 고찰)

  • Lee, Dong-Soo;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.363-368
    • /
    • 2001
  • It is well known that numerous factors influence the light output of curing units, but many dentists are un aware that the output of their curing lights are inadequate. This study was conducted to evaluate the light in tensity of visible-light curing units in some private dental clinics and hospital dental clinics. In order to determine the maximum light intensity of the curing units, lamps, filters and fiber optic bundles, they were replaced with new ones and light intensity was remeasured. Light intensity was measured by employing a digital radiometer (EFOS model #8000, USA). Light intensity ranged in $29\sim866mW/cm^2$ (below $150mW/cm^2$ ; 17.8%, $150\sim300mW/cm^2$ : 46.6%, above $300mW/cm^2$ ; 35.6%). The replacement of the components increased the light intensity, with maximum increases of 94.8% for lamps, 82.3% for filters, 200.8% for fiber optics and 361.5% for all three parts. According to the manufacturer of radiometer, curing light is considered as unsuitable for use with a reading of above $300mW/cm^2$ by the radiometer. Applying these criteria to the present study, 64.4% of the curing units required repair or replacement. The results of this study indicated that the light intensities of the curing units used in dental practice were lower than optimum level.

  • PDF

Removal of Bisphenol-A using Rotating Photocatalytic Oxidation Drum Reactor (RPODR)

  • Son, Hee-Jong;Jung, Chul-Woo;Kim, Seung-Hyun
    • Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.197-202
    • /
    • 2008
  • This study evaluated the photocatalytic oxidation of BPA using the RPOD reactor under various conditions. This study found that the RPOD was effective for BPA degradation. It could reduce 1 mg/L of BPA by half within 5 min under the optimum conditions. According to the study results, $TiO_2$ coating was important for the BPA oxidation. As the coating thickness increased, the removal efficiency improved. The light source, the light intensity and the drum rotating speed were important for the oxidation. The UV light was more effective for the BPA degradation than the visible light. The removal efficiency improved with increasing intensity. As the drum speed increased, the removal efficiency improved. The maximum speed was 240 rpm in this study. Addition of air and nitrogen was not beneficial for the BPA degradation in this study probably due to enough oxygen in the water.

Effect of Tracer Composition on Spectrum and Intensity of Burning Flame (예광제 조성이 연소 불꽃의 스펙트럼 및 광도에 미치는 영향)

  • Kwon, Soon-Kil;Hwang, Jun-Sik;Lee, Sang-Mu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.90-96
    • /
    • 2006
  • Computer simulation was carried out to develop the tracer composition of a high performance to be able to be observed by not only the naked eye but also the thermal imaging system attached to the weapon system. The results of computer simulation show that the optimum Mg content among the trace compositions is about 40% and the formulation consisted of Viton A has a higher flame temperature compared with that of chloride compound. But the only use of Viton A radiates a yellow light and the composition adding a chloride compound radiates the red light. The light intensity of the tracer composition involving Viton A is higher than that of chloride compound. The tracer composition involving Viton A shows more clear images in case of all tests.

The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea Il. Light intensity, Transparency, Suspended substances (西海 京畿 植物플랑크톤에 對한 생態學的 硏究 II. 光度, 透明度, 浮游物質)

  • 최중기;심재형
    • 한국해양학회지
    • /
    • v.21 no.2
    • /
    • pp.101-109
    • /
    • 1986
  • To clarify the light condition which influence phytoplankton ecology in Kyeonggi Bay, light intensity, compensation depth, extinction coefficient, transparency and suspended substances are studied from May 1981 to September 1982.Light intensities lie within adequate values for the phytoplankton growth from spring to autumn. However, in the winter season the light intensities show less than 4.8mw/$\textrm{cm}^2$ on the surface resulting lower than optimum irradiance. Light intensity could be a limiting factor for phytoplankton growth in winter. Compensation depths seasonally varied over an annual period in this study. Especially, in winter, compensation depths are confined to only 1-2m below the surface. Extinction coefficient(K) values are relatively high over an year cycle. K values is highest in winter and lowest in summer. Transparency shows seasonal variation. Tansparency is high in summer and low in winter. Thus low light intensity, low compensation depth, low transparency and high extinction coefficient in winter are due to the high turbidity and high concentrations of suspended substances. High concentrations of S.S. in winter result from the sediments and detritus resuspended by the winter turbulence induced by the strong winter winds and the convectional mixing. In summer, good light condition and low turbidity may result from the thermal stability of water mass preventing the resuspension of sediment particles.

  • PDF

Effect of Light Intensity and Temperature on the Photosynthesis and Respiration of Panax spp (광도와 온도가 인삼의 광합성 및 호흡에 미치는 영향)

  • 이종화
    • Journal of Ginseng Research
    • /
    • v.12 no.1
    • /
    • pp.11-29
    • /
    • 1988
  • This study was conducted to investigate the effect of light intensity and temperature on the photosynthesis and respiration of ginseng plant. Highly significant, second degree curvilinear regressions were recognized among the photosynthesis of ginseng leaves, light intensity and temperature. And an interaction between the effects of light intensity and temperature on the photosynthesis of ginseng leaves was found to be highly significant. The increasing rate of photosynthesis with the increase of light intensity was markedly decreased with increasing temperature. The light compensation point of ginseng leaves was significantly varied with temperature, and the average point was approximately 600 lux. The light saturation point of Korean ginseng was 11,000 lux at $15^{\circ}C$ and $20^{\circ}C$ and around 9,500 lux at above $25^{\circ}C$. The decreasing rate of photosynthesis with the increase of temperature significantly increased with increasing light intensity. The optimum temperature for the photosynthesis of ginseng leaves was about 15 to $22^{\circ}C$ and markedly decreased with increasing light intensity. The highest photosynthesis occurred in ginseng leaves grown with the shade of 15% transmittance. The respiration of ginseng leaves increased with the shade of 5% and/or 30% transmittance. High temperature stimulated the respiration of ginseng leaves. Percent respiration to photosynthesis of ginseng leaves grown with the shade was increased at high temperature and decreased with increasing light Intensity. It was also increased with increasing transmittance. The maximum $CO_2$ absorption of ginseng leaves grown with the shade of 5Ps and ISVS transmittance accurred at 9 o'clock a.m., whereas that of 20% transmittance occurred at 7-9 o'clock a.m. The duration of $CO_2$ absorption was distinctively long with the shade of high transmittance. The $CO_2$ compensation point in the photosynthesis of ginseng leaves was 130 ppm.

  • PDF

Optimum Designs of 2 Segment LED Reflectors for Various Light Output Distributions on the Surface of an LED Chip (LED 칩 표면 광량 분포 변화에 따른 2단 반사컵의 최적 설계)

  • Yim, Hae-Dong;Lee, Dong-Jin;Kim, Yang Gyeom;Jeong, Jang Hee;Lee, Seung-Gol;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.269-273
    • /
    • 2012
  • It is important to control the beam pattern of an LED by the design of a reflector. The optimum conditions of the structure parameters for the 2 segment LED reflector are analyzed and compared as they vary depending on the various intensity distributions of light output on the LED chip surface. It is also interesting that combining various types of reflectors is possible to give several efficient beam patterns, such as the maximum intensity profile or relatively wide controllability of beam angle.