• 제목/요약/키워드: Optimum coating conditions

검색결과 151건 처리시간 0.028초

통계적 실험계획법을 이용한 SOG 평탄화 공정의 최적화 (Optimization of Spin-On-Glass Planarization Process Using Statistical Design of Experiments)

  • 임채영;박세근
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.198-205
    • /
    • 1992
  • 고집적 회로제작에 필수적인 평탄화 기술을 SOG를 이용하여 개발하였다. 1.5 micron double metal 기술의 공정변수들을 통계적 실험계획법을 적용하여 주요변수들을 찾 아내고 그들을 최적화하였다. 최적공적 조건은 SOG 도포 횟수는 2회, hot plate bake는 $300^{\circ}C$에서 충분히, 그리고 furnace curing은 $400^{\circ}C$ 이하에서 40분간 진행하는 것이었다.

  • PDF

Sol-Gel 반응으로 유도된 LAS의 상 생성과 점성 특성 (Phase Formation and Rheological Characteristics of LAS Derived from the Monophasic Sol-Gel Route)

  • 장현명;김광수;정창주
    • 한국세라믹학회지
    • /
    • 제28권5호
    • /
    • pp.365-372
    • /
    • 1991
  • LAS (lithium aluminosilicate) sol was synthesized using the hydrolysis-condensation reaction of TEOS, chelated Al(OBus)3 and Li-salt with H2O in alcohol (EtOH+2-Propanol) medium. Effects of important reaction parameters on the properties of sol and gel-derived LAS were examined. The crystallization of the sol-gel derived LAS with ${\beta}$-spodumene composition began at ∼600$^{\circ}C$, and a series of polymorphic transformations occurred as temperature was increased to 1100$^{\circ}C$: amorphous LAS\longrightarrowhexagonal LiAl(SiO3)2\longrightarrow${\beta}$-spodumene. Lowering Li content in the gel enhanced densification and retarded the crystallization significantly. Optimum reaction conditions of LAS sol formation for thin coating applications were derived from rheological measurements, and these can be summarized as: H2O/total alkoxides molar ratio=4, pH=∼2.5, and aging time of ∼250h.

  • PDF

(Cd+Te)막의 소결조건이 CdS/CdTe 태양전지의 특성에 미치는 영향 (Effects of sintering conditions of (Cd+Te) films on the properties of sintered CdS/CdTe solar cells)

  • 노재성;임호빈
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제1권1호
    • /
    • pp.26-34
    • /
    • 1988
  • Sintered CdS/CdTe solar cells have been farbricated by coating a (Cd+Te) slurry on sintered CdS films followed by the sintering at 625.deg.C for one hour with various heating rates. When cadmium and tellurinm powders are used instead of CdTe powder to form CdS/CdTe junction, CdTe is formed in the temperature range of 290.deg.C-400.deg.C. The microstructure of the CdTe films depends strongly on the heating rate of the sintering due to the low melting temperature and the high vapor pressure of the elemental Cd and Te. An optimum heating rate obtain CdTe films with uniform and dense microstructure which, in turn, improves the efficiency of the sintered CdS/CdTe solar cells. All-polycrystalline CdS/CdTe solar cells with an efficiency of 9.57% under 50mW/cm$^{2}$ tungsten light have been farbricated by using a heating rate of 14.deg.C/min.

  • PDF

Fabrication of Nano-laminar Glass Composite Using Thin Flake

  • Kakisawa, Hideki;Minagawa, Kazumi;Halada, Kohmei
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.330-331
    • /
    • 2006
  • Fabrication of a nano-laminar ceramic composite by sintering thin ceramic plates was examined. Silver-coated glass flakes with a thickness of less than $1{\mu}m$ were consolidated by pulsed current sintering or hotpressing to obtain model composites. The samples sintered at the optimum conditions were fairly dense, and the flakes were aligned by uniaxial press. The metal coating remained on the flakes through the sintering process, and became an interface layer between the flakes. No crack propagation through the transverse direction of the lamellar was observed in the indentation test. The possibilities of high resistance against crack propagation was suggested.

  • PDF

60 kgf/$\textrm{mm}^2$급 자동차용 변태유기소성강화강 Zn-Ni 전기도금 특성 연구 (Characteristics of Zn-Ni Electrodeposition of 60 kgf/$\textrm{mm}^2$ Grade Transformation Induced Plastic Steel Sheets for Automotive Body)

  • 김동환;김병일;전유택;정연수
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.263-272
    • /
    • 2004
  • High strength steels such as transformation induced plastic steel, dual phase and solid solution Hardening have been developed and continuously improved due to the intensified needs in the automotive industry. But silicon and manganese in transformation induced plastic steels were known to exhibit harmful effects on galvannealing reaction by oxide film formed during heat treatment. Therefore, in this work, the applicability of Zn-Ni electrodeposition instead of hot dip galvannealed coating to transformation induced plastic steels was evaluated and optimum electroplating condition was investigated. Based on these investigations optimized electroplating conditions were proposed and Zn-Ni electrogalvanized steel sheet was produced by EGL (electrogalvanized line). Its perfomance properties for automotive steel was evaluated.

도장재의 양생재령과 도장두께가 PCS 도장철근과 시멘트 콘크리트와의 부착강도에 미치는 영향 (The Effects of Curing Age and Thickness of Coating Material on the Bond Strength of PCS-Coated Rebar to Cement Concrete)

  • 조영국
    • 한국건축시공학회지
    • /
    • 제17권4호
    • /
    • pp.331-339
    • /
    • 2017
  • 본 연구는 시멘트 종류, 폴리머 종류, 폴리머 시멘트비, 도장두께를 변화시켜 만든 PCS 도장철근의 시멘트 콘크리트에 대한 부착강도 시험을 실시하여 PCS 도장철근의 부착강도에 영향을 미치는 양생재령과 도장두께에 대하여 평가하고자 하였다. 또한 부착강도 시험결과로 얻어진 최적배합으로 만든 PCS 도장철근을 사용하여 철근콘크리트 보를 제작하여 휨 응력 시험을 실시하여 간접적으로 부착성을 평가하였다. 시험결과, PCS 도장철근의 부착강도는 양생재령 7일과 도장두께 $100{\mu}m$에서 최대치를 나타냈는데, 이는 보통 철근의 1.52배 및 에폭시 도장철근의 1.58배였다. 또한 PCS 도장철근을 사용한 철근콘크리트 보의 최대 파괴하중은 보통철근의 최대 파괴하중의 81.1%~102.3% 범위였으며, 에폭시 도장철근의 최대 파괴하중의 98.4%~124.1% 범위로 나타났다. 본 연구결과, 도장두께 $100{\mu}m$, 폴리머 종류 EVA, 폴리머 시멘트비 80%, 양생재령 7일 조건으로 만든 PCS 도장철근은 실제 건설현장의 철근콘크리트 구조물의 도장철근으로 활용할 수 있는 가능성을 확인하였다.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • 제9권4호
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

인 화합물 처리한 폴리에스테르 DTP 매체의 날염성과 방염성 (The Printability and Flame Retardancy for DTP Media of Polyester Fabrics Treated with Phosphate Compound)

  • 김수창
    • 한국의류산업학회지
    • /
    • 제6권5호
    • /
    • pp.667-672
    • /
    • 2004
  • Poly(ethylene terephthalate) (PET) fabrics were treated with a silica particle and phosphate flame retardant to determine the optimum process condition of the digital textile printing(DTP) media. The treating conditions for the study were 6 conditions, from F1 to F6, in which F3, F4 and F5 were treated with mixture of both silica particle and phosphate compound in process of pad, dry and cure fixation. F6 was treated with phosphate compound only and silica particle coating successively. Xanthan gum was used to control the migration of liquid phosphate compound onto PET fabrics. The change in surface morphology of fabrics treated with silica particle and phosphate compound was observed by SEM and flame retardance was evaluated by limiting oxygen index(LOI). It was observed that F6 was the excellent flame retardance and low bleeding in printing, Collectively, the printing characteristics of silica to cyan, magenta, yellow and black ink and flame retardance of fabrics finished with phosphate compound were identified in this study.

차체용 알루미늄합금의 인산염피막 처리액의 특성 관한 연구 (A study on the characteristics of phosphating solution for automobile-aluminum-body sheets)

  • 이규환;노병호;김만
    • 한국표면공학회지
    • /
    • 제27권4호
    • /
    • pp.207-214
    • /
    • 1994
  • In consideration of global environmental protection and fuel saving, aluminum alloy sheets for auto body panels such as hood, fender etc., are expected one of the most promising materials for weight saving of cars. The chemical conversion coating is required to prevent the filiform corrosion occurring on painted aluminum. However the conventional process for the composited material mixed with aluminum and steel is complexs; aluminum part is chromated and assembled to the body, and then the steel body undergoes Zn phosphating. In order to overcome the low productivity due to the complex process and the environmental problem with a conventional process, a simultaneous zinc phosphating process for alsuminum and steel in an assembled condition is demanded. Newly developed phosphate solution has been investigated to characterize the phosphating behavior under various conditions. The optimum conditions of the phosphating solution for the application of the paint treatment derived as follows : about 0.3 for the ratio of Zn to $PO_4$, , 200~500 ppm for the concentration of fluoride ion, and 2.5~4.0 for pH. The concentration of dissolved aluminum ion must be kept below 2--ppm and suitable accelerator is found to be a mixture of 1g/$\ell$ $NO_2\;^-$, and 6g/$\ell$ $NO_3\;^-$.

  • PDF

초고온 MEMS용 SiCN 미세구조물 제작과 그 특성 (Fabrication of SiCN Microstructures for Super-High Temperature MEMS and Its Characteristics)

  • 이규철;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.392-393
    • /
    • 2006
  • This paper describes the fabrication of SiCN microstructures for super-high temperature MEMS using photopolymerization of pre-ceramic polymer. In this work. polysilazane liquide as a precursor was deposited on Si wafers by spin coating. microstructured and solidificated by UV lithography. and removed from the substrate. The resulting solid polymer microstructures were cross-linked under HIP process and pyrolyzed to form a ceramic of withstanding over $1400^{\circ}C$. Finally, the fabricated SiCN microstructures were annealed at $1400^{\circ}C$ in a nitrogen atmosphere. Mechanical characteristics of the SiCN microstructure with different fabrication process conditions were evaluated. The elastic modules. hardness and tensile strength of the SiC microstructure implemented under optimum process conditions are 94.5 GPa, 10.5 GPa and 11.7 N/min, respectively. Consequently, the SiCN microstructure proposed in this work is very suitable for super-high temperature MEMS application due to very simple fabrication process and the potential possiblity of sophisticated multlayer or 3D microstructures as well as its good mechanical properties.

  • PDF