• 제목/요약/키워드: Optimum Process Target

Search Result 102, Processing Time 0.028 seconds

The Methodology of Systematic Global Calibration for Process Simulator

  • Lee, Jun-Ha;Lee, Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.180-184
    • /
    • 2004
  • This paper proposes a novel methodology of systematic global calibration and validates its accuracy and efficiency with application to memory and logic devices. With 175 SIMS profiles which cover the range of conditions of implant and diffusion processes in the fabrication lines, the dominant diffusion phenomenon in each process temperature region has been determined. Using the dual-pearson implant model and fully-coupled diffusion model, the calibration was performed systematically. We applied the globally calibrated process simulator parameters to memory and logic devices to predict the optimum process conditions for target device characteristics.

A Study on HEMT Device Process (Part I. Lift-off Process for the Metallization) (HEMT 소자 공정 연구 (Part 1. 금속박막 형성을 위한 Lift-off 공정연구))

  • 이종람;박성호;김진섭;마동성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1535-1544
    • /
    • 1989
  • The overhang structure of photoresist in optical lithography was studied for the metallization of GaAs-related devices throughout lift-off method. Optical contact aligner with a dose of 8.5 m J/cm\ulcornerand with a wavelength of 300mm was used for ultraviolet exposure of single layer of S1400-27 photoresist. The overhang thickness shows a linear relationship with the soaking time in monochlorobenzene, which its magnitude becomes high at elevated softbake temperature. Such process conditions as a low softbake temperature, a long monochlorohbenzene soaking time and a little exposed energy make the development rate of photoresist lower. The optimum process conditions to obtain a target line-width, which include an appropriate overhang structure such as complete separation between the sidewall of photoresist pattern and the deposited metal edge, are determined as the softbake temperature of 64-74\ulcornerC, the monochlorobenzene soaking time of 10-15min, the ultraviolet exposure time of 70-100sec and the development time of 50-80sec.

  • PDF

Superplastic Forming Process Analysis for Aluminium Body Forming (알루미늄 차체성형을 위한 초소성 성형공정해석)

  • Kim C. G.;Kim Y. H.;Woo H. P.;Kim M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.89-92
    • /
    • 2001
  • A rigid-viscoplastic finite element code for superplastic forming processes has been developed The material is assumed to be isotropic and a modified Coulomb friction law is adopted to explain contact between tool and sheet. This code uses the triangular element based on the membrane approximation and a hierarchical contact searching method is implemented The optimum pressure-time relationships for target strain rate are calculated by several pressure control algorithms. By the analysis, optimum pressure-time curves and deformation behavior are predicted.

  • PDF

Injection Molding Analysis of Battery case considering the Insert Deformation (인서트 변형을 고려한 배터리 케이스 사출 성형 해석)

  • Ahn, Dong-Gyu;Kim, Dea-Won
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1107-1112
    • /
    • 2008
  • The objective of this paper is to investigate into the influence of the injection conditions on the insert deformation and the wall thickness of the injection part using the three-dimensional injection molding analysis. Full three-dimensional insert model was added to the injection molding analysis model to consider the effects of insert deformation during the injection molding process. In order to obtain the optimum injection molding condition with a minimum insert deformation, degree of experiments were utilized. From the results of the analyses, it was shown that the optimum injection condition is injection time of 1.6 sec, injection pressure of 30 MPa and packing time of 15 sec. In addition it was shown that the wall thickness is approached to target thickness when the core deformation is considered in the injection molding analysis.

  • PDF

A Study on the Stability Control of Injection-molded Product Weight using Artificial Neural Network (인공신경망을 이용한 사출성형품의 무게 안정성 제어에 대한 연구)

  • Lee, Jun-Han;Kim, Jong-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.773-787
    • /
    • 2020
  • In the injection molding process, the controlling stability of products quality is a very important factor in terms of productivity. Even when the optimum process conditions for the desired product quality are applied, uncontrollable external factors such as ambient temperature and humidity cause inevitable changes in the state of the melt resin, mold temperature. etc. Therefore, it is very difficult to maintain prodcut quality. In this study, a system that learns the correlation between process variables and product weight through artificial neural networks and predicts process conditions for the target weight was established. Then, when a disturbance occurs in the injection molding process and fluctuations in the weight of the product occur, the stability control of the product quality was performed by ANN predicting a new process condition for the change of weight. In order to artificially generate disturbance in the injection molding process, controllable factors were selected and changed among factors not learned in the ANN model. Initially, injection molding was performed with a polypropylene having a melt flow index of 10 g/10min, and then the resin was replaced with a polypropylene having a melt floiw index of 33 g/10min to apply disturbance. As a result, when the disturbance occurred, the deviation of the weight was -0.57 g, resulting in an error of -1.37%. Using the control method proposed in the study, through a total of 11 control processes, 41.57 g with an error of 0.00% in the range of 0.5% deviation of the target weight was measured, and the weight was stably maintained with 0.15±0.07% error afterwards.

The Optimization of Offset Printing Process for High Quality Color Reproduction(II);Platemaking and Presswork (고품질 색재현을 위한 오프셋인쇄 공정의 최적화에 관한 연구(II);제판과 인쇄공정을 중심으로)

  • Kim, Sung-Su;Kang, Sang-Hoon
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2007.11a
    • /
    • pp.13-28
    • /
    • 2007
  • Producing printing plate is essential progress to do offset printing. In this Film-less period, the more PS plate becomes extinct, the more the age of the Plate-Making of Exposure declines the place to stand. To do offset printing, the CTP (Computer to Plate) is taking a place of PS plate that covers speed, quality and economical problems. The biggest advantage of using CTP is that laser directly goes to the plate, thus there are no dust from the Plate-Making of Exposure. It is also theoretically able to print 200lpi${\sim}$300lpi as well as print 1751pi, because it has over 2400dpi resolution. The high quality printing could be available inside of the country, if printing machine keeps the optimum condition in offset printing. The CTP has many advantages, however there is a difficulty for the operators to preserve the equipment. The actual circumstance is that they cannot make a decision about how many dots need to be generated, and also it is necessary to know how to establish the setup at RIP on CTP to make the optimum condition output. If offset printing machine keeps the optimum condition, it would be able to print up to high quality printing however it is hard to comment what is the optimum condition for the printing machine. Anyone could say easy subjectively that machine is in the optimum condition, however it is objectively hard to estimate by number. In this research GATF / Plate Test target used to analyze the image and to make numerical value of the optimum condition of the CTP. It also used GATF / The sheep fed test printing 5.0 to know the density of the color representation, dot gain and gray balance for the optimum condition of the print machine. The purpose of this research is to represent the ISO 12647-2 which is the international standard with domestic printing equipments.

  • PDF

The Optimization of Offset Printing Process for High Quality Color Reproduction (II) - Platemaking and Presswork - (고품질 색재현을 위한 오프셋 인쇄공정의 최적화에 관한 연구(II) - 제판과 인쇄공정을 중심으로 -)

  • Kim, Sung-Su;Kang, Sang-Hoon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.2
    • /
    • pp.69-84
    • /
    • 2007
  • Producing printing plate is essential progress to do offset printing. In this Film-less period, the more PS plate becomes extinct, the more the age of the Plate-Making of Exposure declines the place to stand. To do offset printing, the CTP (Computer to Plate) is taking a place of PS plate that covers speed, quality and economical problems. The biggest advantage of using CTP is that laser directly goes to the plate, thus there are no dust from the Plate-Making of Exposure. It is also theoretically able to print $200lpi{\sim}300lpi$ as well as print 1751pi, because it has over 2400dpi resolution. The high quality printing could be available inside of the country, if printing machine keeps the optimum condition in offset printing. The CTP has many advantages, however there is a difficulty for the operators to preserve the equipment. The actual circumstance is that they cannot make a decision about how many dots need to be generated, and also it is necessary to know how to establish the setup at RIP on CTP to make the optimum condition output. If offset printing machine keeps the optimum condition, it would be able to print up to high quality printing however it is hard to comment what is the optimum condition for the printing machine. Anyone could say easy subjectively that machine is in the optimum condition, however it is objectively hard to estimate by number. In this research GATF / Plate Test target used to analyze the image and to make numerical value of the optimum condition of the CTP. It also used GATF / The sheep fed test printing 5.0 to know the density of the color representation, dot gain and gray balance for the optimum condition of the print machine. The purpose of this research is to represent the ISO 12647-2 which is the international standard with domestic printing equipments.

  • PDF

A Study on the Optimal Make of X-ray Ionizer using the Monte Carlo N-Particle Extended Code(II) (Monte Carlo N-Particle Extended Code를 이용한 연 X선 정전기제거장치의 최적제작에 관한 연구(II))

  • Jeong, Phil Hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.29-33
    • /
    • 2017
  • In order to solve this sort of electrostatic failure in Display and Semiconductor process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. There exist variable factors such as type of tungsten thickness deposited on target, Anode voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. Here, MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was compared according to target material thickness using MCNPX and actual X-ray tube source under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W). At the result, In Tube voltage 5 keV and distance 100 mm, optimal target thickness is $0.05{\mu}m$ and fastest decay time appears + decay time 0.28 sec. - deacy time 0.30 sec. In Tube voltage 10keV and distance 100 mm, optimal target Thickness is $0.16{\mu}m$ and fastest decay time appears + decay time 0.13 sec. - deacy time 0.12 sec. In the tube voltage 15 keV and distance 100 mm, optimal target Thickness is $0.28{\mu}m$ and fastest decay time appears + decay time 0.04 sec. - deacy time 0.05 sec.

Directed evolution을 이용한 (S)-Ketoprofen ethlyester의 광학분활용 Esterase의 특성 개량

  • Kim, Seung-Beom;Kim, Ji-Hui;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.445-449
    • /
    • 2003
  • As for the purpose, we first introduce an random mutation into wild-type gene to expand a mutation space, and then further recombine the mutant genes by staggered extension process PCR. As a result, we obtained the best clones 6-52 that showed a high activity and stability, from a round of error prone and staggered extension process PCR. The purified enzyme showed a similar pH stability to the wild-type enzyme and reveal a slightly high optimum pH at 12. In the optimum temperature, an identical dependency was also showed and a quite high stability in the thermal stability was obtained. Along with this, the enzyme was also stable at a reaction that supplement with a 15 % of ethanol as an additive. The addition of other solvents and surfactants did not improve the reaction and thus resulted in a similar profile to those of wild-type enzyme. The specific activity on the target compound rac-ketoprofen ethyl ester was calculated to be about 85, 000 unit, and the kinetic constants Km and Vmax were determined to be 0.2 mM and 90 mM/mg-protein/min respectively. The deduced amino acid alignment with the wild type enzyme revealed five mutations at L120P, I208V, T249A, D287H and T357A. Based on these observations, the site directed mutagenesis to delineate the mutagenic effect is under progress.

  • PDF

Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures (다중반사 구조를 갖는 복합구조물의 RCS 감소를 위한 광대역 다층 전파흡수체 설계)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.445-450
    • /
    • 2007
  • An optimum design process of the broad-band multi-layered radar absorbing material, using genetic algorithm, is established for the radar cross section reduction of a complex target, which consists of multiple reflection structures, such as surface warships. It follows the successive process of radar cross section analysis, scattering center analysis, radar absorbing material design, and reanalysis of radar cross section after applying the radar absorbing material. It is demonstrated that it is very effective even in the optimum design of the multi-layer radar absorbing material. This results from the fact that the three factors, i.e.. the incident angle range, broad-band frequencies, and maximum thickness can be simultaneously taken into account by adopting the genetic algorithm.