• Title/Summary/Keyword: Optimum Design Condition

Search Result 782, Processing Time 0.034 seconds

Seismic vibration control of bridges with excessive isolator displacement

  • Roy, Bijan K.;Chakraborty, Subrata;Mishra, Sudib K.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1451-1465
    • /
    • 2016
  • The effectiveness of base isolation (BI) systems for mitigation of seismic vibration of bridges have been extensively studied in the past. It is well established in those studies that the performance of BI system is largely dependent on the characteristics of isolator yield strength. For optimum design of such systems, normally a standard nonlinear optimization problem is formulated to minimize the maximum response of the structure, referred as Stochastic Structural Optimization (SSO). The SSO of BI system is usually performed with reference to a problem of unconstrained optimization without imposing any restriction on the maximum isolator displacement. In this regard it is important to note that the isolator displacement should not be arbitrarily large to fulfil the serviceability requirements and to avoid the possibility of pounding to the adjacent units. The present study is intended to incorporate the effect of excessive isolator displacement in optimizing BI system to control seismic vibration effect of bridges. In doing so, the necessary stochastic response of the isolated bridge needs to be optimized is obtained in the framework of statistical linearization of the related nonlinear random vibration problem. A simply supported bridge is taken up to elucidate the effect of constraint condition on optimum design and overall performance of the isolated bridge compared to that of obtained by the conventional unconstrained optimization approach.

Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials (철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정)

  • Yu S.J.;Kim J.H;Park J.S.;Kwon D.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF

Estimating Utilization Factor of Left Turn Lane for Through Traffic, Intersection Capacity, and Optimum Signal Timings (직진교통의 좌회전차선 이용률 추정과 교차로용량 및 최적신호등시간 산정)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • Intersection control has dual-purposes; increasing capacity and reducing delay. The primary concern of efficient intersection control under oversaturated condition as in Korea is to increase capacity. Prevailing intersection operation technique permits thru traffic to utilize left turn lane, because the intersection without left turn pocket has left turn signal interval. In this situation, it seems not to be valid to calculate capacity, delay, and signal timings by conventional methods. By critical lane technique, capacity increases as cycle length increases. However, when thru traffic utilize LT lane, the capacity varies according to LT volume, LT interval as well as cycle length, which implies that specific cycle length and LT interval exist to maximize capacity for given LT volume. The study is designed is designed to calculate utilization factors of LT lane for thru traffic and capacities, and identify signal timings to yield maximum capacity. The experimental design involved has 3 variables; 1)LT volumes at each approach(20-300 vph), 2)cycle lengths (60-220 sec), and 3)LT intervals(2.6-42 sec) for one scenario of isolated intersection crossing two 6-lanes streets. For LT volume of 50-150 vph, capacity calculated by using the utilization factor is about 25% higher than that by critical lane method. The range of optimum cycle length to yield maximum capapcity for LT volume less than 120 vph is 140-180 sec, and increases as LT volume increases. The optimum LT interval to yield maximum capacity is longer than the intrval necessary to accommodate LT volume at saturation flow rate.

  • PDF

Finite Element Analysis of a Ventilating Box Structure (통기성 상자 구조물에 대한 유한요소 해석)

  • 박종민;권순구
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.557-564
    • /
    • 2002
  • Corrugated board is an efficient low-cost structure material fur the boxes that are widely used for transporting, storing and distributing goods. Corrugated board is also considered as an orthotropic because the principal material directions are the same as in paperboard. The purpose of this study was to elucidate the principal design parameters of ventilating box through the FEA on the various types of ventilating hole. From the viewpoint of the stress distribution and stress level, the optimum pattern and location of the ventilating hole were vertically oblong, and symmetry position with a short distance to the right and left from the center of front and rear panel. And, the optimum location and pattern of hand hole were a short distance to the top from the center of both side panels, and modified shape to increase the radius of curvature of both side in horizontal oblong. In general, the optimum pattern and location of both the ventilating hole and hand hole based on the FEM analysis were well verified by experimental investigation. It is suggested that decrease in compressive strength of the box could be minimized in the same ventilating hole area under the condition of the length of major axis of ventilating hole is less than 1/4 of box length, the ratio of minor axis/major axis is 113.5∼l/2.5, and number of the ventilating holes is even and symmetrical.

Optimization of Coffee Extract Condition for the Manufacture of Instant Coffee by RSM (인스턴트커피 제조를 위한 커피추출조건 최적화)

  • Ko, Bong Soo;Lim, Sang Ho;Han, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.319-325
    • /
    • 2017
  • In this study, we optimized the coffee extraction conditions for instant coffee production in two stage percolators, which is the most common coffee extractor for instant coffee production. A central composite design was used to build mathematical model equations for response surface methodology (RSM). In these equations, the yield and overall acceptability of the coffee extracts were expressed as second-order functions of three factors, the feed water temperature, draw-off factor (DOF), and extraction time (cycle time). Based on the result of RSM, the optimum conditions were obtained with the use of desirability function approach (DFA) which find the best compromise area among multiple options. The optimum extraction conditions to maximize the yield and overall acceptability over 40% of yield were found with $163^{\circ}C$ of feed water temperature, 4.3 of DOF and 27 minutes of extraction time (cycle time). These results provide a basic data for the coffee extraction conditions for the competitive instant coffee in the industry.

Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

  • Arachchi, Shanika Jeewantha Thewarapperuma;Kim, Ye-Joo;Kim, Dae-Wook;Oh, Sang-Chul;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ${\Delta}E$ was consequently set as the fifth response factor. In the statistical analyses, determination coefficients ($R^2$) for their absorbance, Hunter's L, a, b values, and ${\Delta}E$ were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, $111^{\circ}C$ reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, $114^{\circ}C$ reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

The Power Rating Design of Inductively Coupled Plasma Light Source and The Electrical Dependency Between Parameters (ICP 광원의 정격용량 설계 요소와 전기적 의존성)

  • Kim, Hyun-Il;Park, Dae-Hee;Chang, Hong-Soon;Baek, Soo-Hyun;Yim, Youn-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.453-457
    • /
    • 2008
  • We studied on the dependency of parameters which those were used to design a ballast of ICP light source. These parameters were derived from Barkhausen criterion equation about the oscillating condition of ballast. Comparing with a change of turns, we can suggest that a change of l is suitable to control a $I_p$ of an ICP light source. According to the Z-l equation, we can find an optimum rating power of ICP light sources corresponding to l.

Process Design of Superplastic Forming/Diffusion Bonding by Using Design of Experiment (실험계획법을 이용한 초소성 성형/확산접합의 공정설계)

  • Song, J.S.;Kang, Y.K.;Hong, S.S.;Kwon, Y.N.;Lee, J.H.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.144-149
    • /
    • 2007
  • The superplastic forming/diffusion bonding(SPF/DB) is widely used in the automotive and aerospace industry because it has great advantage to produce complex, light and strong parts. But the superplastic forming process requires much forming time and generates excessive thinning in the thickness distribution of formed part. It is necessary to minimize trial and error for SPF/DB Process. Finite element analysis using $L_{18}$ orthogonal may table of Taguchi method for 3-Sheet D/B process is carried out. Through the study, effect of process parameters, such as DH region size, thickness and friction coefficient, is evaluated and the optimum condition is derived.

Development of The Tunnel Type Locating Drill Jig by Practical and Adaptive Tooling

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.185-189
    • /
    • 2001
  • In order to prevent the production defects the optimum design of product, jig and fixture putting in the field is very significant manufacturing method. Drilling Jig is the device according to industrial demand for multi manufacturing products on the growing at alarming rate. In the field of design and making for machine tool working, welding, assembling with jig and fixture for mass production is a specific division. They require analysis of many kinds of important factors, theory and practice of machine tool operating process and jig & fixture structure, machining condition for tool making, tool materials, heat treatment of jig & fixture components, know-how and so on. In this study we designed and constructed a drilling jig of mass production and performed tryout under the Auto CAD, Auto Lisp database, that we made by database, and window environment. Especially this study is reveals with the analysis of part drawing, jig planning, jig design etc, and then the result of drill jig's making try out.

  • PDF

Optimization of Antibacterial Activity by Gold-Thread (Coptidis Rhizoma Franch) Against Streptococcus mutans Using Evolutionary Operation-Factorial Design Technique

  • Choi, Ung-Kyu;Kim, Mi-Hyang;Lee, Nan-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1880-1884
    • /
    • 2007
  • This study was conducted to find the optimum extraction condition of Gold-Thread for antibacterial activity against Streptococcus mutans using The evolutionary operation-factorial design technique. Higher antibacterial activity was achieved in a higher extraction temperature ($R^2=-0.79$) and in a longer extraction time ($R^2=-0.71$). Antibacterial activity was not affected by differentiation of the ethanol concentration in the extraction solvent ($R^2=-0.12$). The maximum antibacterial activity of clove against S. mutans determined by the EVOP-factorial technique was obtained at $80^{\circ}C$ extraction temperature, 26 h extraction time, and 50% ethanol concentration. The population of S. mutans decreased from 6.110 logCFU/ml in the initial set to 4.125 logCFU/ml in the third set.