• Title/Summary/Keyword: Optimizing Parameters

Search Result 460, Processing Time 0.027 seconds

A study on the rule-based self-tuning PID controller utilizing GPC (GPC를 이용한 규칙기반 자기동조 PID제어기에 관한 연구)

  • 이창구;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1004-1007
    • /
    • 1992
  • In this paper, we present a solution to the PID tuning problem by optimizing a GPC(General Predictive Control) criterion. The PID structure is ensured by constraning the parameters to a feasible set defined by the discrete-time Euler approximation of the ideal continuous-time PID controller. The algorithm is ectended by incorporating heuristic rules for selection of the significant design parameters. The algorithm has been successfully tested and some results are prewented.

  • PDF

LINEAR PROGRAMMING SOLUTIONS OF GENERALIZED LINEAR IMPULSIVE CORRECTION FOR GEOSTATIONARY STATIONKEEPING

  • Park, Jae-Woo
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 1996
  • The generalized linear impulsive correction problem is applied to make a linear programming problem for optimizing trajectory of an orbiting spacecraft. Numerical application for the stationkeeping maneuver problem of geostationary satellite shows that this problem can efficiently find the optimal solution of the stationkeeping parameters, such as velocity changes, and the points of impulse by using the revised simplex method.

  • PDF

Methodology for Optimizing Parameters of Vehicle Safety Regulation on Pedestrian Protection (보행자-차량 충돌안전기준 매개변수 최적화 방법론 개발 및 적용)

  • Oh, Cheol;Kim, Beom-Il;Kang, Youn-Soo;Youn, Young-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.186-194
    • /
    • 2006
  • Traffic accident involved with the vulnerable pedestrian is one of the significant concerns, which has higher possibility of fatality than any other accident types. Worldwide significant efforts have been made to establish a vehicle safety regulation, which is internationally agreed, in order to reduce pedestrian casualties in pedestrian-vehicle collisions. One of the key issues in deriving the regulation is how to effectively select the parameter values associated with the regulation. This study firstly develops a method to optimize parameter values. An optimizing problem in terms of maximizing safety benefits, which are life-saving effects by the regulation, is formulated. Extensive actual accident data analysis and simulations are conducted to establish several statistical models to be used in the proposed optimization procedure. A set of parameter values that can produce maximizing life-saving effects is presented as the outcome of this study. It is expected that the proposed method would play a significant role in determining parameters as a decision support tool toward ensuring better pedestrian safety.

The Optical Design and Simulation Results for LED Stage Lighting System (무대조명용 LED 광학시스템 설계 및 시뮬레이션 결과)

  • Park, Kwang-Woo;Joo, Jae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • The principle of an illumination and projection system including LED light sources for a spot type stage lighting system was presented, and its optical system was designed with optimizing parameters by the analytical methods. A dichroic mirror incorporated with an illumination system to optimizing LED source positions and to obtain the compact system. The projection system was optimized with specific constraints such as a chromatic aberration, distortion aberration and angle of incidence angles. Optimized design system has a beam angle from $10^{\circ}$ to $45^{\circ}$, and its illuminance was 4,500lux at distance of 6m on the work plane.

Analysis of Variance for Using Common Random Numbers When Optimizing a System by Simulation and RSM (시뮬레이션과 RSM을 이용한 시스템 최적화 과정에서 공통난수 활용에 따른 분산 분석)

  • 박진원
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.41-50
    • /
    • 2001
  • When optimizing a complex system by determining the optimum condition of the system parameters of interest, we often employ the process of estimating the unknown objective function, which is assumed to be a second order spline function. In doing so, we normally use common random numbers for different set of the controllable factors resulting in more accurate parameter estimation for the objective function. In this paper, we will show some mathematical result for the analysis of variance when using common random numbers in terms of the regression error, the residual error and the pure error terms. In fact, if we can realize the special structure of the covariance matrix of the error terms, we can use the result of analysis of variance for the uncorrelated experiments only by applying minor changes.

  • PDF

Optimization of Fuzzy Relational Models

  • Pedrycz, W.;de Oliveira, J. Valente
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1187-1190
    • /
    • 1993
  • The problem of the optimization of fuzzy relational models for dealing with (non-fuzzy) numerical data is investigated. In this context, interfaces optimization assumes particular importance, becoming a determinant factor in what concerns the overall model performance. Considering this, several scenarios for building fuzzy relational models are presented. These are: (i) optimizing I/O interfaces in advance (independently from the linguistic part of the model); (ii) optimizing I/O interfaces in advance and allowing that their optimized parameters may change during the learning of the linguistic part of the model; (iii) build simultaneously both interfaces and the linguistic subsystem; and (iv) build simultaneously both linguistic subsystem and interfaces, now subject to semantic integrity constraints. As linguistic subsystems, both a basic type and an extended versions of fuzzy relation equations are exploited in each one of these scenarios. A comparative analysis of the differ nt approaches is summarized.

  • PDF

A Development of Earth Parameters and Equivalent Resistivity Estimation Algorithm for ITS Facility Stabilization (ITS설비의 안정화를 위한 대지파라미터 및 등가대지저항률 추정 알고리즘 개발)

  • Lee, Jong-Pil;Lim, Jae-Yoon;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.4
    • /
    • pp.186-191
    • /
    • 2013
  • Earth equipments are essential to protect ITS facilities from abnormal situation. In this research, an estimation algorithm of earth parameters and equivalent resistivity is introduced. Traditional estimation methods can be divided into graphic method and numerical method. The result of graphic method is varied by the ability of expert or repeated calculation and it is hard to estimate the parameters precisely. The numerical method requires special techniques such as optimizing theory, and numerous calculations, whose results can be varied with initial values. The proposed algorithm is based on the relationship between apparent resistances and earth parameters and approximates the nonlinear characteristics of earth using ANN(artificial neural networks). The effectiveness of proposed method is verified in case studies.

Optimizing the Process Parameters of EDM on SCM440 Steel (SCM440강의 방전가공에서 공정변수의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2018
  • The objective of this research study is to investigate the optimal process parameters of electrical discharge machining (EDM) on SCM440 steel with copper as a tool electrode. The effect of various process parameters on machining performance is investigated in this study. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SCM440 steel. To predict the optimal condition, the experiments are conducted by using Taguchi's L27 orthogonal array. The work material was ED machined with copper electrodes by varying the pulsed current, pulse on-time, voltage, servo speed and spark speed. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation (엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

Fine Dispensing Process of High Viscosity Phosphor for Repairing Application of White LED (백색 LED 보정 공정 적용을 위한 고점도 형광체 미세 정량토출 공정)

  • Yang, Bong Su;Yang, Young Jin;Kim, Hyung Chan;Ko, Jeong Beom;Cho, Kyung Ho;Doh, Yang Hoi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.124-131
    • /
    • 2016
  • Several research works for finding and optimizing the methods of dispensing high viscosity phosphor used in the fabrication of white LED's are currently in progress. High viscosity phosphor dispensing with a high accuracy is crucial because the dispensing rate and uniformity directly affect parameters such as the CIE chromaticity diagram, color temperature and luminous flux of white LED's. This study presents a novel method of dispensing high viscosity phosphor using electrohydrodynamic printing. The dispensing rate was optimized less than 0.01 mg phosphor using experiments and optimizing the process parameters including the standoff distance from the nozzle to the substrate, ink supply pressure, and multi-step pulsed waveform magnitude ratio. The dispensing rate was measured by dispensing 20 dots using drop-on-demand with the optimized parameters, and the experiments were repeated 10 times to maximize the data accuracy. The average dispensing rate that can be reliably used for high viscosity phosphor dispensing was 0.0052 mg.